利用基于随机复杂性的标准对自回归模型进行阶次估计

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Kuwait Journal of Science Pub Date : 2024-05-22 DOI:10.1016/j.kjs.2024.100251
Hassania Hamzaoui , Freedath Djibril Moussa , Abdelaziz El Matouat
{"title":"利用基于随机复杂性的标准对自回归模型进行阶次估计","authors":"Hassania Hamzaoui ,&nbsp;Freedath Djibril Moussa ,&nbsp;Abdelaziz El Matouat","doi":"10.1016/j.kjs.2024.100251","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we are interested in the order estimation of an autoregressive model using the information criterion developed by El Matouat and Hallin (1996), which is based on stochastic complexity. This criterion is a generalization of the Hannan and Quinn criterion and provides a convergence of the model order estimator, but it depends on a parameter that is sensitive to the sample size. In order to select the exact order of the candidate model, we propose a method for identifying the values of this parameter from the sample using the information contained in sub-samples of increasing size. To study the performance of the proposed method in comparison with the usual criteria, we simulated samples from autoregressive models on which we applied our procedure. Simulation results support the relevance of our procedure when compared to the Akaike criterion, the Hannan and Quinn criterion, and the Schwarz criterion.</p></div>","PeriodicalId":17848,"journal":{"name":"Kuwait Journal of Science","volume":"51 4","pages":"Article 100251"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2307410824000762/pdfft?md5=26d4c7eb1a92c0ddedb2dcdc6483a2d4&pid=1-s2.0-S2307410824000762-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Order estimation for autoregressive models using criteria based on stochastic complexity\",\"authors\":\"Hassania Hamzaoui ,&nbsp;Freedath Djibril Moussa ,&nbsp;Abdelaziz El Matouat\",\"doi\":\"10.1016/j.kjs.2024.100251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we are interested in the order estimation of an autoregressive model using the information criterion developed by El Matouat and Hallin (1996), which is based on stochastic complexity. This criterion is a generalization of the Hannan and Quinn criterion and provides a convergence of the model order estimator, but it depends on a parameter that is sensitive to the sample size. In order to select the exact order of the candidate model, we propose a method for identifying the values of this parameter from the sample using the information contained in sub-samples of increasing size. To study the performance of the proposed method in comparison with the usual criteria, we simulated samples from autoregressive models on which we applied our procedure. Simulation results support the relevance of our procedure when compared to the Akaike criterion, the Hannan and Quinn criterion, and the Schwarz criterion.</p></div>\",\"PeriodicalId\":17848,\"journal\":{\"name\":\"Kuwait Journal of Science\",\"volume\":\"51 4\",\"pages\":\"Article 100251\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2307410824000762/pdfft?md5=26d4c7eb1a92c0ddedb2dcdc6483a2d4&pid=1-s2.0-S2307410824000762-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kuwait Journal of Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2307410824000762\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kuwait Journal of Science","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2307410824000762","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们感兴趣的是利用 El Matouat 和 Hallin(1996 年)开发的基于随机复杂性的信息准则对自回归模型进行阶次估计。该准则是 Hannan 和 Quinn 准则的一般化,提供了模型阶次估计的收敛性,但它取决于一个对样本大小敏感的参数。为了准确选择候选模型的阶次,我们提出了一种方法,利用样本容量不断增大的子样本中包含的信息,从样本中确定该参数的值。为了研究建议方法与通常标准的性能比较,我们模拟了自回归模型的样本,并在这些样本上应用了我们的程序。模拟结果表明,与 Akaike 准则、Hannan 和 Quinn 准则以及 Schwarz 准则相比,我们的程序具有相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Order estimation for autoregressive models using criteria based on stochastic complexity

In this paper, we are interested in the order estimation of an autoregressive model using the information criterion developed by El Matouat and Hallin (1996), which is based on stochastic complexity. This criterion is a generalization of the Hannan and Quinn criterion and provides a convergence of the model order estimator, but it depends on a parameter that is sensitive to the sample size. In order to select the exact order of the candidate model, we propose a method for identifying the values of this parameter from the sample using the information contained in sub-samples of increasing size. To study the performance of the proposed method in comparison with the usual criteria, we simulated samples from autoregressive models on which we applied our procedure. Simulation results support the relevance of our procedure when compared to the Akaike criterion, the Hannan and Quinn criterion, and the Schwarz criterion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kuwait Journal of Science
Kuwait Journal of Science MULTIDISCIPLINARY SCIENCES-
CiteScore
1.60
自引率
28.60%
发文量
132
期刊介绍: Kuwait Journal of Science (KJS) is indexed and abstracted by major publishing houses such as Chemical Abstract, Science Citation Index, Current contents, Mathematics Abstract, Micribiological Abstracts etc. KJS publishes peer-review articles in various fields of Science including Mathematics, Computer Science, Physics, Statistics, Biology, Chemistry and Earth & Environmental Sciences. In addition, it also aims to bring the results of scientific research carried out under a variety of intellectual traditions and organizations to the attention of specialized scholarly readership. As such, the publisher expects the submission of original manuscripts which contain analysis and solutions about important theoretical, empirical and normative issues.
期刊最新文献
Optimization of fermentation conditions for 3-methylthio-1-propanol production by Saccharomycopsis fibuligera Y1402 in tobacco matrix Bayesian estimation strategy for multi-component geometric life testing model under doubly type-1 censoring scheme In silico analysis of point mutation (c.687dupC; p. Met230Hisfs∗6) in PGAM2 gene that causes Glycogen Storage Disease (GSD) Type X Innovative synthesis and performance enhancement of yttria-stabilized zirconia nanocrystals via hydrothermal method with Uncaria gambir Roxb. leaf extract as a capping agent Bayesian estimation under different loss functions for the case of inverse Rayleigh distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1