{"title":"在 IBM 量子计算机上对谷歌梧桐门进行全量子层析研究","authors":"Muhammad AbuGhanem, Hichem Eleuch","doi":"10.1140/epjqt/s40507-024-00248-8","DOIUrl":null,"url":null,"abstract":"<div><p>The potential of achieving computational hardware with quantum advantage depends heavily on the quality of quantum gate operations. However, the presence of imperfect two-qubit gates poses a significant challenge and acts as a major obstacle in developing scalable quantum information processors. Google’s Quantum AI and collaborators claimed to have conducted a supremacy regime experiment. In this experiment, a new two-qubit universal gate called the <i>Sycamore</i> gate is constructed and employed to generate random quantum circuits (RQCs), using a programmable quantum processor with 53 qubits. These computations were carried out in a computational state space of size <span>\\(9 \\times 10^{15}\\)</span>. Nevertheless, even in strictly-controlled laboratory settings, quantum information on quantum processors is susceptible to various disturbances, including undesired interaction with the surroundings and imperfections in the quantum state. To address this issue, we conduct both quantum state tomography (QST) and quantum process tomography (QPT) experiments on Google’s <i>Sycamore</i> gate using different artificial architectural superconducting quantum computer. Furthermore, to demonstrate how errors affect gate fidelity at the level of quantum circuits, we design and conduct full QST experiments for the five-qubit eight-cycle circuit, which was introduced as an example of the programability of Google’s <i>Sycamore</i> quantum processor. These quantum tomography experiments are conducted in three distinct environments: noise-free, noisy simulation, and on IBM Quantum’s genuine quantum computer. Our results offer valuable insights into the performance of IBM Quantum’s hardware and the robustness of <i>Sycamore</i> gates within this experimental setup. These findings contribute to our understanding of quantum hardware performance and provide valuable information for optimizing quantum algorithms for practical applications.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00248-8","citationCount":"0","resultStr":"{\"title\":\"Full quantum tomography study of Google’s Sycamore gate on IBM’s quantum computers\",\"authors\":\"Muhammad AbuGhanem, Hichem Eleuch\",\"doi\":\"10.1140/epjqt/s40507-024-00248-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The potential of achieving computational hardware with quantum advantage depends heavily on the quality of quantum gate operations. However, the presence of imperfect two-qubit gates poses a significant challenge and acts as a major obstacle in developing scalable quantum information processors. Google’s Quantum AI and collaborators claimed to have conducted a supremacy regime experiment. In this experiment, a new two-qubit universal gate called the <i>Sycamore</i> gate is constructed and employed to generate random quantum circuits (RQCs), using a programmable quantum processor with 53 qubits. These computations were carried out in a computational state space of size <span>\\\\(9 \\\\times 10^{15}\\\\)</span>. Nevertheless, even in strictly-controlled laboratory settings, quantum information on quantum processors is susceptible to various disturbances, including undesired interaction with the surroundings and imperfections in the quantum state. To address this issue, we conduct both quantum state tomography (QST) and quantum process tomography (QPT) experiments on Google’s <i>Sycamore</i> gate using different artificial architectural superconducting quantum computer. Furthermore, to demonstrate how errors affect gate fidelity at the level of quantum circuits, we design and conduct full QST experiments for the five-qubit eight-cycle circuit, which was introduced as an example of the programability of Google’s <i>Sycamore</i> quantum processor. These quantum tomography experiments are conducted in three distinct environments: noise-free, noisy simulation, and on IBM Quantum’s genuine quantum computer. Our results offer valuable insights into the performance of IBM Quantum’s hardware and the robustness of <i>Sycamore</i> gates within this experimental setup. These findings contribute to our understanding of quantum hardware performance and provide valuable information for optimizing quantum algorithms for practical applications.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-024-00248-8\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-024-00248-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-024-00248-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
实现具有量子优势的计算硬件的潜力在很大程度上取决于量子门操作的质量。然而,不完美的双量子比特门的存在带来了巨大挑战,成为开发可扩展量子信息处理器的主要障碍。谷歌的量子人工智能与合作者声称已经进行了一次至高机制实验。在这项实验中,他们构建了一个名为 "梧桐门 "的新型双量子比特通用门,并利用一个拥有 53 个量子比特的可编程量子处理器来生成随机量子电路(RQC)。这些计算是在一个大小为(9乘以10^{15}\)的计算状态空间中进行的。然而,即使在严格控制的实验室环境中,量子处理器上的量子信息也很容易受到各种干扰,包括与周围环境的意外交互和量子态的不完美。为了解决这个问题,我们使用不同的人工架构超导量子计算机,在谷歌梧桐门上进行了量子态层析成像(QST)和量子过程层析成像(QPT)实验。此外,为了证明误差如何影响量子电路层面的栅极保真度,我们为五量子比特八周期电路设计并进行了完整的量子态层析成像(QST)实验,该电路是作为谷歌 Sycamore 量子处理器可编程性的一个例子引入的。这些量子层析成像实验在三种不同的环境中进行:无噪声、噪声模拟以及 IBM Quantum 真正的量子计算机。我们的结果为了解 IBM Quantum 硬件的性能以及 Sycamore 门在此实验设置中的鲁棒性提供了宝贵的见解。这些发现有助于我们了解量子硬件的性能,并为优化实际应用中的量子算法提供了宝贵的信息。
Full quantum tomography study of Google’s Sycamore gate on IBM’s quantum computers
The potential of achieving computational hardware with quantum advantage depends heavily on the quality of quantum gate operations. However, the presence of imperfect two-qubit gates poses a significant challenge and acts as a major obstacle in developing scalable quantum information processors. Google’s Quantum AI and collaborators claimed to have conducted a supremacy regime experiment. In this experiment, a new two-qubit universal gate called the Sycamore gate is constructed and employed to generate random quantum circuits (RQCs), using a programmable quantum processor with 53 qubits. These computations were carried out in a computational state space of size \(9 \times 10^{15}\). Nevertheless, even in strictly-controlled laboratory settings, quantum information on quantum processors is susceptible to various disturbances, including undesired interaction with the surroundings and imperfections in the quantum state. To address this issue, we conduct both quantum state tomography (QST) and quantum process tomography (QPT) experiments on Google’s Sycamore gate using different artificial architectural superconducting quantum computer. Furthermore, to demonstrate how errors affect gate fidelity at the level of quantum circuits, we design and conduct full QST experiments for the five-qubit eight-cycle circuit, which was introduced as an example of the programability of Google’s Sycamore quantum processor. These quantum tomography experiments are conducted in three distinct environments: noise-free, noisy simulation, and on IBM Quantum’s genuine quantum computer. Our results offer valuable insights into the performance of IBM Quantum’s hardware and the robustness of Sycamore gates within this experimental setup. These findings contribute to our understanding of quantum hardware performance and provide valuable information for optimizing quantum algorithms for practical applications.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.