墙体连接处空气流动的湿热反应:两种数值方法与实验之间的比较

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-05-28 DOI:10.1016/j.ijthermalsci.2024.109169
Leonardo Delgadillo Buenrostro , Louis Gosselin , Pierre Blanchet
{"title":"墙体连接处空气流动的湿热反应:两种数值方法与实验之间的比较","authors":"Leonardo Delgadillo Buenrostro ,&nbsp;Louis Gosselin ,&nbsp;Pierre Blanchet","doi":"10.1016/j.ijthermalsci.2024.109169","DOIUrl":null,"url":null,"abstract":"<div><p>Airflow in wall-to-wall junctions is known to have a major hygrothermal impact on building performance. However, current and validated modeling options to simulate such phenomena are limited. This paper develops and compares two numerical models to study the heat and moisture transfer due to air infiltrations through a prefabricated wall-to-wall junction. The first model explicitly accounts for the airflow with a pipe flow approach. The second model is a modification to a typical approach to simulate ventilated cavities in building envelope simulation tools and mimics the effect of the airflow through source terms. Both approaches were introduced in a heat and moisture transfer 2D finite element model. Additionally, laboratory measurements were conducted in a climatic chamber to validate the simulation results. Six scenarios were tested experimentally under steady-state conditions. These datasets were used to calibrate different parameters of the models, such as material properties, the junction air gap thickness, and the magnitude of the heat and moisture source terms. Both sets of numerical results provided reasonable agreement with the measurements. The first approach outputs more accurate temperature and relative humidity values than the second one. However, considering uncertainties, no method predicted a perfect fit with the relative humidity profiles. Close to the junction, the first method estimates better the relative humidity than the second one. This work provides guidelines to better model and account for wall junctions in building envelope simulators.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1290072924002916/pdfft?md5=11badd3fb2951df6b054ce9bae4fab7b&pid=1-s2.0-S1290072924002916-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hygrothermal response to air movements in wall junctions: Comparison between two numerical approaches and experiments\",\"authors\":\"Leonardo Delgadillo Buenrostro ,&nbsp;Louis Gosselin ,&nbsp;Pierre Blanchet\",\"doi\":\"10.1016/j.ijthermalsci.2024.109169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Airflow in wall-to-wall junctions is known to have a major hygrothermal impact on building performance. However, current and validated modeling options to simulate such phenomena are limited. This paper develops and compares two numerical models to study the heat and moisture transfer due to air infiltrations through a prefabricated wall-to-wall junction. The first model explicitly accounts for the airflow with a pipe flow approach. The second model is a modification to a typical approach to simulate ventilated cavities in building envelope simulation tools and mimics the effect of the airflow through source terms. Both approaches were introduced in a heat and moisture transfer 2D finite element model. Additionally, laboratory measurements were conducted in a climatic chamber to validate the simulation results. Six scenarios were tested experimentally under steady-state conditions. These datasets were used to calibrate different parameters of the models, such as material properties, the junction air gap thickness, and the magnitude of the heat and moisture source terms. Both sets of numerical results provided reasonable agreement with the measurements. The first approach outputs more accurate temperature and relative humidity values than the second one. However, considering uncertainties, no method predicted a perfect fit with the relative humidity profiles. Close to the junction, the first method estimates better the relative humidity than the second one. This work provides guidelines to better model and account for wall junctions in building envelope simulators.</p></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1290072924002916/pdfft?md5=11badd3fb2951df6b054ce9bae4fab7b&pid=1-s2.0-S1290072924002916-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924002916\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924002916","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,墙与墙连接处的气流对建筑性能有重大的湿热影响。然而,目前用于模拟此类现象的有效建模方案非常有限。本文开发并比较了两种数值模型,以研究空气渗入预制墙体与墙体连接处导致的热量和湿气传递。第一个模型采用管流方法明确考虑了气流。第二个模型是对建筑围护结构模拟工具中模拟通风空腔的典型方法的修改,通过源项模拟气流的影响。这两种方法都被引入到热量和湿气传递二维有限元模型中。此外,还在气候室中进行了实验室测量,以验证模拟结果。在稳态条件下对六种方案进行了实验测试。这些数据集用于校准模型的不同参数,如材料属性、交界处气隙厚度以及热源和湿源项的大小。两组数值结果都与测量结果保持了合理的一致。第一种方法输出的温度和相对湿度值比第二种方法更准确。然而,考虑到不确定性,没有一种方法能预测出与相对湿度曲线完全吻合的结果。在接近交界处时,第一种方法比第二种方法能更好地估计相对湿度。这项工作为在建筑围护结构模拟器中更好地模拟和计算墙体交界处提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hygrothermal response to air movements in wall junctions: Comparison between two numerical approaches and experiments

Airflow in wall-to-wall junctions is known to have a major hygrothermal impact on building performance. However, current and validated modeling options to simulate such phenomena are limited. This paper develops and compares two numerical models to study the heat and moisture transfer due to air infiltrations through a prefabricated wall-to-wall junction. The first model explicitly accounts for the airflow with a pipe flow approach. The second model is a modification to a typical approach to simulate ventilated cavities in building envelope simulation tools and mimics the effect of the airflow through source terms. Both approaches were introduced in a heat and moisture transfer 2D finite element model. Additionally, laboratory measurements were conducted in a climatic chamber to validate the simulation results. Six scenarios were tested experimentally under steady-state conditions. These datasets were used to calibrate different parameters of the models, such as material properties, the junction air gap thickness, and the magnitude of the heat and moisture source terms. Both sets of numerical results provided reasonable agreement with the measurements. The first approach outputs more accurate temperature and relative humidity values than the second one. However, considering uncertainties, no method predicted a perfect fit with the relative humidity profiles. Close to the junction, the first method estimates better the relative humidity than the second one. This work provides guidelines to better model and account for wall junctions in building envelope simulators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Modeling and investigating the fuel heating in injector nozzle hole under action of pressure drop and viscous friction Optimizing heat transfer and convective cell dynamics in 2D Rayleigh–Bénard convection: The effect of variable boundary temperature distribution An extended multi-segmented human bioheat model for high-altitude cold environments and its application in cold risk analysis Geometrical parameters optimization to improve the effective thermal conductivity of the gas diffusion layer for PEM fuel cell Numerical investigation of flow, heat transfer characteristics and structure improvement in a fluidized bed solar particle receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1