利用多孔碳泡沫的喷射撞击实现均匀传热

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-05-29 DOI:10.1016/j.ijthermalsci.2024.109158
Ketan Yogi, Shankar Krishnan, S.V. Prabhu
{"title":"利用多孔碳泡沫的喷射撞击实现均匀传热","authors":"Ketan Yogi,&nbsp;Shankar Krishnan,&nbsp;S.V. Prabhu","doi":"10.1016/j.ijthermalsci.2024.109158","DOIUrl":null,"url":null,"abstract":"<div><p>Applications requiring high heat transfer rates, such as cooling of high-density electrical equipment, cooling of gas turbine components, cooling of rocket launcher components, cryosurgery, etc., are frequently use impinging jets. Non-uniformity in the heat transmission from the impingement surface is the main drawback of jet impingement heat transfer. In order to achieve uniform heat transfer, the current study examines the presence of porous carbon foam on a targeted surface. Using a thin metal foil and infrared thermography, the local heat transfer distribution of a porous carbon foamed surface is determined. The findings of the porous carbon foamed surface are compared to the bare surface (smooth surface without foam) for local Nusselt number and uniformity in the heat transfer (coefficient of variance). The effects of Reynolds number, foam height, and the distance between the nozzle exit to the targeted plate are examined. The results of the carbon foamed surfaces are also compared with the aluminium metal foamed surface results available in the literature. The current work also describes the separation of the modes of heat transfer that exist with porous carbon foamed surfaces while under jet impingement. The findings imply that, depending on the height of the carbon foam, the porous carbon foam on a targeted surface gives a lower or equivalent heat transfer rate compared to a bare surface. In comparison to a bare surface, carbon foam on a targeted surface provides uniform heat transfer that is independent of foam height. The study of the separation of modes of heat transfer suggests that heat from the porous carbon foamed surface is conveyed by conduction induced by carbon foam and convection induced by jet fluid. The convection provided by the jet fluid is compromised by the carbon foam on a targeted surface. The conduction induced by carbon foam makes the heat transfer from the targeted surface more uniform. The conduction and convection factors can be used to present the conduction and convection heat transfer from porous carbon foamed surfaces, respectively. Regression analysis is used to develop a region-wise correlation for the conduction and convection components. The local Nusselt number of a carbon foamed flat plate can be predicted using the local Nusselt of a bare surface utilizing the provided correlations for conduction and convection factor.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform heat transfer with jet impingement using porous carbon foam\",\"authors\":\"Ketan Yogi,&nbsp;Shankar Krishnan,&nbsp;S.V. Prabhu\",\"doi\":\"10.1016/j.ijthermalsci.2024.109158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Applications requiring high heat transfer rates, such as cooling of high-density electrical equipment, cooling of gas turbine components, cooling of rocket launcher components, cryosurgery, etc., are frequently use impinging jets. Non-uniformity in the heat transmission from the impingement surface is the main drawback of jet impingement heat transfer. In order to achieve uniform heat transfer, the current study examines the presence of porous carbon foam on a targeted surface. Using a thin metal foil and infrared thermography, the local heat transfer distribution of a porous carbon foamed surface is determined. The findings of the porous carbon foamed surface are compared to the bare surface (smooth surface without foam) for local Nusselt number and uniformity in the heat transfer (coefficient of variance). The effects of Reynolds number, foam height, and the distance between the nozzle exit to the targeted plate are examined. The results of the carbon foamed surfaces are also compared with the aluminium metal foamed surface results available in the literature. The current work also describes the separation of the modes of heat transfer that exist with porous carbon foamed surfaces while under jet impingement. The findings imply that, depending on the height of the carbon foam, the porous carbon foam on a targeted surface gives a lower or equivalent heat transfer rate compared to a bare surface. In comparison to a bare surface, carbon foam on a targeted surface provides uniform heat transfer that is independent of foam height. The study of the separation of modes of heat transfer suggests that heat from the porous carbon foamed surface is conveyed by conduction induced by carbon foam and convection induced by jet fluid. The convection provided by the jet fluid is compromised by the carbon foam on a targeted surface. The conduction induced by carbon foam makes the heat transfer from the targeted surface more uniform. The conduction and convection factors can be used to present the conduction and convection heat transfer from porous carbon foamed surfaces, respectively. Regression analysis is used to develop a region-wise correlation for the conduction and convection components. The local Nusselt number of a carbon foamed flat plate can be predicted using the local Nusselt of a bare surface utilizing the provided correlations for conduction and convection factor.</p></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924002801\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924002801","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

高密度电气设备冷却、燃气轮机部件冷却、火箭发射器部件冷却、冷冻手术等需要高热传导率的应用领域经常使用撞击射流。撞击面传热不均匀是射流撞击传热的主要缺点。为了实现均匀传热,本研究对目标表面是否存在多孔碳泡沫进行了研究。利用薄金属箔和红外热成像技术,确定了多孔碳泡沫表面的局部传热分布。将多孔碳泡沫表面与裸表面(无泡沫的光滑表面)的局部努塞尔特数和传热均匀性(方差系数)进行了比较。研究了雷诺数、泡沫高度以及喷嘴出口到目标板之间距离的影响。碳泡沫表面的结果还与文献中的铝金属泡沫表面结果进行了比较。目前的研究还描述了多孔碳泡沫表面在射流撞击下的传热模式分离。研究结果表明,根据碳泡沫的高度,目标表面上的多孔碳泡沫与裸露表面相比,传热率较低或相当。与裸露表面相比,目标表面上的碳泡沫能提供与泡沫高度无关的均匀传热。对热传递模式分离的研究表明,多孔碳泡沫表面的热量是通过碳泡沫的传导和喷射流体的对流传递的。喷射流体提供的对流受到目标表面碳泡沫的影响。碳泡沫的传导使目标表面的热量传递更加均匀。传导系数和对流系数可分别用来表示多孔碳泡沫表面的传导热量和对流热量。回归分析用于建立传导和对流分量的区域相关性。利用所提供的传导和对流因子相关性,可以用裸表面的局部努塞尔特数来预测碳泡沫平板的局部努塞尔特数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uniform heat transfer with jet impingement using porous carbon foam

Applications requiring high heat transfer rates, such as cooling of high-density electrical equipment, cooling of gas turbine components, cooling of rocket launcher components, cryosurgery, etc., are frequently use impinging jets. Non-uniformity in the heat transmission from the impingement surface is the main drawback of jet impingement heat transfer. In order to achieve uniform heat transfer, the current study examines the presence of porous carbon foam on a targeted surface. Using a thin metal foil and infrared thermography, the local heat transfer distribution of a porous carbon foamed surface is determined. The findings of the porous carbon foamed surface are compared to the bare surface (smooth surface without foam) for local Nusselt number and uniformity in the heat transfer (coefficient of variance). The effects of Reynolds number, foam height, and the distance between the nozzle exit to the targeted plate are examined. The results of the carbon foamed surfaces are also compared with the aluminium metal foamed surface results available in the literature. The current work also describes the separation of the modes of heat transfer that exist with porous carbon foamed surfaces while under jet impingement. The findings imply that, depending on the height of the carbon foam, the porous carbon foam on a targeted surface gives a lower or equivalent heat transfer rate compared to a bare surface. In comparison to a bare surface, carbon foam on a targeted surface provides uniform heat transfer that is independent of foam height. The study of the separation of modes of heat transfer suggests that heat from the porous carbon foamed surface is conveyed by conduction induced by carbon foam and convection induced by jet fluid. The convection provided by the jet fluid is compromised by the carbon foam on a targeted surface. The conduction induced by carbon foam makes the heat transfer from the targeted surface more uniform. The conduction and convection factors can be used to present the conduction and convection heat transfer from porous carbon foamed surfaces, respectively. Regression analysis is used to develop a region-wise correlation for the conduction and convection components. The local Nusselt number of a carbon foamed flat plate can be predicted using the local Nusselt of a bare surface utilizing the provided correlations for conduction and convection factor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Modeling and investigating the fuel heating in injector nozzle hole under action of pressure drop and viscous friction Optimizing heat transfer and convective cell dynamics in 2D Rayleigh–Bénard convection: The effect of variable boundary temperature distribution An extended multi-segmented human bioheat model for high-altitude cold environments and its application in cold risk analysis Geometrical parameters optimization to improve the effective thermal conductivity of the gas diffusion layer for PEM fuel cell Numerical investigation of flow, heat transfer characteristics and structure improvement in a fluidized bed solar particle receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1