{"title":"基于微芯片电泳脉冲安培检测器的土壤农药分析仪的开发和特性分析","authors":"Rishi Raj , Suddhasatwa Basu , Sandeep Kumar Jha","doi":"10.1016/j.biosx.2024.100502","DOIUrl":null,"url":null,"abstract":"<div><p>The present study involved the fabrication and testing of a Microchip electrophoresis (MCE) device for pulse amperometry based detection of pesticides from their mixture. We were able to separate and then quantify three distinct types of insecticides, namely Chlorpyrifos, Imidacloprid, and Fipronil using on chip MCE followed by pulsed amperometric detection. All these results were obtained with an inhouse developed potentiostat cum controller unit with a detection time of only 15 min, employing a minimal sample size of 2 μL without any preconcentration or extraction procedure. The limit of detection (LOD) was calculated as 42.69 μM, 62.61 μM, and 71.14 μM or 14.96, 16.0 and 31.09 ppm, respectively for Chlorpyrifos, Imidacloprid, and Fipronil and their respective migration times as 536 ± 6.3 s, 484 ± 1.7 s, and 604 ± 3.5 s (n = 14). The sensitivity of detection was determined as 0.03 nA/μM for Chlorpyrifos, 0.0265 nA/μM for Imidacloprid, and 0.035 nA/μM for Fipronil. In addition, the efficacy of the produced microchip was confirmed by analysing soil extract spiked with known pesticides concentrations while the recovery percentage, representing a ratio of calculated concentration to spiked concentration multiplied by hundred was found as 84.3% (±9.4%) (n = 9). Thus, integrating microchip technology with the developed analytical instruments presents significant promise for practical field applications and the analysis of diverse analytes by way of creating a library where the migration coefficient and peak detection current are needed for any analyte which can be made cationic or anionic using a suitable buffer.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100502"},"PeriodicalIF":10.6100,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000669/pdfft?md5=c3b3cbcebf197ef8233415b537d5141d&pid=1-s2.0-S2590137024000669-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of microchip electrophoresis pulsed amperometric detector-based soil pesticide analyser\",\"authors\":\"Rishi Raj , Suddhasatwa Basu , Sandeep Kumar Jha\",\"doi\":\"10.1016/j.biosx.2024.100502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study involved the fabrication and testing of a Microchip electrophoresis (MCE) device for pulse amperometry based detection of pesticides from their mixture. We were able to separate and then quantify three distinct types of insecticides, namely Chlorpyrifos, Imidacloprid, and Fipronil using on chip MCE followed by pulsed amperometric detection. All these results were obtained with an inhouse developed potentiostat cum controller unit with a detection time of only 15 min, employing a minimal sample size of 2 μL without any preconcentration or extraction procedure. The limit of detection (LOD) was calculated as 42.69 μM, 62.61 μM, and 71.14 μM or 14.96, 16.0 and 31.09 ppm, respectively for Chlorpyrifos, Imidacloprid, and Fipronil and their respective migration times as 536 ± 6.3 s, 484 ± 1.7 s, and 604 ± 3.5 s (n = 14). The sensitivity of detection was determined as 0.03 nA/μM for Chlorpyrifos, 0.0265 nA/μM for Imidacloprid, and 0.035 nA/μM for Fipronil. In addition, the efficacy of the produced microchip was confirmed by analysing soil extract spiked with known pesticides concentrations while the recovery percentage, representing a ratio of calculated concentration to spiked concentration multiplied by hundred was found as 84.3% (±9.4%) (n = 9). Thus, integrating microchip technology with the developed analytical instruments presents significant promise for practical field applications and the analysis of diverse analytes by way of creating a library where the migration coefficient and peak detection current are needed for any analyte which can be made cationic or anionic using a suitable buffer.</p></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"19 \",\"pages\":\"Article 100502\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000669/pdfft?md5=c3b3cbcebf197ef8233415b537d5141d&pid=1-s2.0-S2590137024000669-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137024000669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Development and characterization of microchip electrophoresis pulsed amperometric detector-based soil pesticide analyser
The present study involved the fabrication and testing of a Microchip electrophoresis (MCE) device for pulse amperometry based detection of pesticides from their mixture. We were able to separate and then quantify three distinct types of insecticides, namely Chlorpyrifos, Imidacloprid, and Fipronil using on chip MCE followed by pulsed amperometric detection. All these results were obtained with an inhouse developed potentiostat cum controller unit with a detection time of only 15 min, employing a minimal sample size of 2 μL without any preconcentration or extraction procedure. The limit of detection (LOD) was calculated as 42.69 μM, 62.61 μM, and 71.14 μM or 14.96, 16.0 and 31.09 ppm, respectively for Chlorpyrifos, Imidacloprid, and Fipronil and their respective migration times as 536 ± 6.3 s, 484 ± 1.7 s, and 604 ± 3.5 s (n = 14). The sensitivity of detection was determined as 0.03 nA/μM for Chlorpyrifos, 0.0265 nA/μM for Imidacloprid, and 0.035 nA/μM for Fipronil. In addition, the efficacy of the produced microchip was confirmed by analysing soil extract spiked with known pesticides concentrations while the recovery percentage, representing a ratio of calculated concentration to spiked concentration multiplied by hundred was found as 84.3% (±9.4%) (n = 9). Thus, integrating microchip technology with the developed analytical instruments presents significant promise for practical field applications and the analysis of diverse analytes by way of creating a library where the migration coefficient and peak detection current are needed for any analyte which can be made cationic or anionic using a suitable buffer.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.