通过主动学习和非梯度优化设计扩大声带隙的 2.5D 声共振器

IF 4.7 Q2 NANOSCIENCE & NANOTECHNOLOGY Micro and Nano Systems Letters Pub Date : 2024-06-04 DOI:10.1186/s40486-024-00202-4
Syed Muhammad Anas Ibrahim, Jungyul Park
{"title":"通过主动学习和非梯度优化设计扩大声带隙的 2.5D 声共振器","authors":"Syed Muhammad Anas Ibrahim,&nbsp;Jungyul Park","doi":"10.1186/s40486-024-00202-4","DOIUrl":null,"url":null,"abstract":"<div><p>Identifying the phononic crystal (PnC) with bandgap is a problematic process because all phononic crystals don’t have bandgap. Predicting the Phononic bandgaps (PnBGs) is a computationally expensive task. Here we explore the potential of machine learning (ML) tools to expedite the prediction and maximize the resonator based PnBG. The Gaussian process regression (GPR) model is trained to learn the relationship between complicated shape and band structure of cavity. Bayesian optimization (BO) derives a new shape by leveraging the fast inference of the trained model, which is updated with the augmentation of newly explored structures to escalate the prediction power over performance expansion through active learning. Artificial intelligence (AI) assisted optimization requires a small number of generations to achieve convergence. The obtained results are validated via experimental measurements.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"12 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00202-4","citationCount":"0","resultStr":"{\"title\":\"Design of enlarged phononic bandgap 2.5D acoustic resonator via active learning and non-gradient optimization\",\"authors\":\"Syed Muhammad Anas Ibrahim,&nbsp;Jungyul Park\",\"doi\":\"10.1186/s40486-024-00202-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Identifying the phononic crystal (PnC) with bandgap is a problematic process because all phononic crystals don’t have bandgap. Predicting the Phononic bandgaps (PnBGs) is a computationally expensive task. Here we explore the potential of machine learning (ML) tools to expedite the prediction and maximize the resonator based PnBG. The Gaussian process regression (GPR) model is trained to learn the relationship between complicated shape and band structure of cavity. Bayesian optimization (BO) derives a new shape by leveraging the fast inference of the trained model, which is updated with the augmentation of newly explored structures to escalate the prediction power over performance expansion through active learning. Artificial intelligence (AI) assisted optimization requires a small number of generations to achieve convergence. The obtained results are validated via experimental measurements.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00202-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-024-00202-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-024-00202-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

识别具有带隙的声子晶体(PnC)是一个难题,因为所有的声子晶体都不具有带隙。预测声波带隙(PnBGs)是一项计算成本高昂的任务。在此,我们探索了机器学习(ML)工具的潜力,以加快预测并最大限度地提高基于谐振器的 PnBG。通过训练高斯过程回归(GPR)模型来学习复杂形状与腔体带状结构之间的关系。贝叶斯优化(BO)通过利用训练有素模型的快速推理得出新的形状,并随着新探索结构的增加而更新,从而通过主动学习在性能扩展的基础上提升预测能力。人工智能(AI)辅助优化只需少量代次即可实现收敛。实验测量验证了所获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of enlarged phononic bandgap 2.5D acoustic resonator via active learning and non-gradient optimization

Identifying the phononic crystal (PnC) with bandgap is a problematic process because all phononic crystals don’t have bandgap. Predicting the Phononic bandgaps (PnBGs) is a computationally expensive task. Here we explore the potential of machine learning (ML) tools to expedite the prediction and maximize the resonator based PnBG. The Gaussian process regression (GPR) model is trained to learn the relationship between complicated shape and band structure of cavity. Bayesian optimization (BO) derives a new shape by leveraging the fast inference of the trained model, which is updated with the augmentation of newly explored structures to escalate the prediction power over performance expansion through active learning. Artificial intelligence (AI) assisted optimization requires a small number of generations to achieve convergence. The obtained results are validated via experimental measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micro and Nano Systems Letters
Micro and Nano Systems Letters Engineering-Biomedical Engineering
CiteScore
10.60
自引率
5.60%
发文量
16
审稿时长
13 weeks
期刊最新文献
ZnO-adipic acid composites as phase change material for latent heat thermal energy storage systems Behavior of 1-octanol and biphasic 1-octanol/water droplets in a digital microfluidic system Investigating non fluorescence nanoparticle transport in Matrigel-filled microfluidic devices using synchrotron X-ray scattering Flexible sensing probe for the simultaneous monitoring of neurotransmitters imbalance Effect of pure (ligand-free) nanoparticles of magnetite in sodium chloride matrix on hematological indicators, blood gases, electrolytes and serum iron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1