Gafar Babatunde Bamigbade, Athira Jayasree Subhash, Mohammed Tarique, Basel al-Ramadi, Basim Abu-Jdayil, Afaf Kamal-Eldin, Laura Nyström, Mutamed Ayyash
{"title":"枣渣多糖:超声波辅助深共晶溶剂萃取、理化特性、生物活性、肠道微生物群调节和流变特性","authors":"Gafar Babatunde Bamigbade, Athira Jayasree Subhash, Mohammed Tarique, Basel al-Ramadi, Basim Abu-Jdayil, Afaf Kamal-Eldin, Laura Nyström, Mutamed Ayyash","doi":"10.1186/s40538-024-00601-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>This study utilized ultrasonication-assisted green extraction techniques to explore the physicochemical, rheological, biological, and prebiotic properties, alongside gut modulation abilities of novel polysaccharides extracted from date pomace. The extraction aimed at enhancing the utilization of date pomace, a by-product of date fruit processing, by investigating its potential as a functional food ingredient. The research focused on optimizing the extraction process, understanding the complex structure of the polysaccharides, and assessing their various health-related functionalities.</p><h3>Results</h3><p>The ultrasonically extracted polysaccharides (UPS) were identified as a mixture of significant bioactive compounds including galacturonic acid, galactose, glucose, arabinose, and fructose, showcasing a high molecular weight of 537.7 kDa. The study found that UPS exhibited outstanding antioxidant activities, with scavenging abilities ranging from 59 to 82% at a concentration of 1000 mg/L. Additionally, UPS demonstrated potent inhibitory effects on α-amylase (83%), α-glucosidase (81%), and ACE-inhibition (45%), alongside strong antiproliferative activities against Caco-2 and MCF-7 cancer cell lines and broad-spectrum antimicrobial properties. Remarkably, UPS also enhanced the abundance of beneficial gut microbiota, including Actinobacteria, Firmicutes, and Proteobacteria, during in vitro fermentations and positively modulated gut metabolic pathways, promoting the production of major short-chain fatty acids. UPS had higher abundance in pathways related to cofactors, vitamins, electron carriers, and prosthetic groups biosynthesis compared to blank.</p><h3>Conclusions</h3><p>The findings affirm the potential of UPS extracted from date pomace as an innovative and promising functional food ingredient. Its high molecular weight, complex sugar composition, significant antioxidant, antimicrobial, antiproliferative activities, and prebiotic properties make it a valuable resource for promoting health and managing diseases. This study paves the way for further research on the bioavailability and physiological effects of UPS in vivo, highlighting the importance of sustainable utilization of agricultural by-products in developing functional foods that support human health.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00601-0","citationCount":"0","resultStr":"{\"title\":\"Date pomace polysaccharide: ultrasonic-assisted deep eutectic solvent extraction, physicochemical properties, biological activities, gut microbiota modulation, and rheological properties\",\"authors\":\"Gafar Babatunde Bamigbade, Athira Jayasree Subhash, Mohammed Tarique, Basel al-Ramadi, Basim Abu-Jdayil, Afaf Kamal-Eldin, Laura Nyström, Mutamed Ayyash\",\"doi\":\"10.1186/s40538-024-00601-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>This study utilized ultrasonication-assisted green extraction techniques to explore the physicochemical, rheological, biological, and prebiotic properties, alongside gut modulation abilities of novel polysaccharides extracted from date pomace. The extraction aimed at enhancing the utilization of date pomace, a by-product of date fruit processing, by investigating its potential as a functional food ingredient. The research focused on optimizing the extraction process, understanding the complex structure of the polysaccharides, and assessing their various health-related functionalities.</p><h3>Results</h3><p>The ultrasonically extracted polysaccharides (UPS) were identified as a mixture of significant bioactive compounds including galacturonic acid, galactose, glucose, arabinose, and fructose, showcasing a high molecular weight of 537.7 kDa. The study found that UPS exhibited outstanding antioxidant activities, with scavenging abilities ranging from 59 to 82% at a concentration of 1000 mg/L. Additionally, UPS demonstrated potent inhibitory effects on α-amylase (83%), α-glucosidase (81%), and ACE-inhibition (45%), alongside strong antiproliferative activities against Caco-2 and MCF-7 cancer cell lines and broad-spectrum antimicrobial properties. Remarkably, UPS also enhanced the abundance of beneficial gut microbiota, including Actinobacteria, Firmicutes, and Proteobacteria, during in vitro fermentations and positively modulated gut metabolic pathways, promoting the production of major short-chain fatty acids. UPS had higher abundance in pathways related to cofactors, vitamins, electron carriers, and prosthetic groups biosynthesis compared to blank.</p><h3>Conclusions</h3><p>The findings affirm the potential of UPS extracted from date pomace as an innovative and promising functional food ingredient. Its high molecular weight, complex sugar composition, significant antioxidant, antimicrobial, antiproliferative activities, and prebiotic properties make it a valuable resource for promoting health and managing diseases. This study paves the way for further research on the bioavailability and physiological effects of UPS in vivo, highlighting the importance of sustainable utilization of agricultural by-products in developing functional foods that support human health.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00601-0\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-024-00601-0\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00601-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Date pomace polysaccharide: ultrasonic-assisted deep eutectic solvent extraction, physicochemical properties, biological activities, gut microbiota modulation, and rheological properties
Background
This study utilized ultrasonication-assisted green extraction techniques to explore the physicochemical, rheological, biological, and prebiotic properties, alongside gut modulation abilities of novel polysaccharides extracted from date pomace. The extraction aimed at enhancing the utilization of date pomace, a by-product of date fruit processing, by investigating its potential as a functional food ingredient. The research focused on optimizing the extraction process, understanding the complex structure of the polysaccharides, and assessing their various health-related functionalities.
Results
The ultrasonically extracted polysaccharides (UPS) were identified as a mixture of significant bioactive compounds including galacturonic acid, galactose, glucose, arabinose, and fructose, showcasing a high molecular weight of 537.7 kDa. The study found that UPS exhibited outstanding antioxidant activities, with scavenging abilities ranging from 59 to 82% at a concentration of 1000 mg/L. Additionally, UPS demonstrated potent inhibitory effects on α-amylase (83%), α-glucosidase (81%), and ACE-inhibition (45%), alongside strong antiproliferative activities against Caco-2 and MCF-7 cancer cell lines and broad-spectrum antimicrobial properties. Remarkably, UPS also enhanced the abundance of beneficial gut microbiota, including Actinobacteria, Firmicutes, and Proteobacteria, during in vitro fermentations and positively modulated gut metabolic pathways, promoting the production of major short-chain fatty acids. UPS had higher abundance in pathways related to cofactors, vitamins, electron carriers, and prosthetic groups biosynthesis compared to blank.
Conclusions
The findings affirm the potential of UPS extracted from date pomace as an innovative and promising functional food ingredient. Its high molecular weight, complex sugar composition, significant antioxidant, antimicrobial, antiproliferative activities, and prebiotic properties make it a valuable resource for promoting health and managing diseases. This study paves the way for further research on the bioavailability and physiological effects of UPS in vivo, highlighting the importance of sustainable utilization of agricultural by-products in developing functional foods that support human health.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.