聚碳酸酯面板光学特性的数值研究

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-06-07 DOI:10.1016/j.ijthermalsci.2024.109174
Yichao Geng, Xu Han, Jing Wang, Haibo Liu, Hua Zhang, Jianbao Wang, Luyang Shi, Tianfei Gao
{"title":"聚碳酸酯面板光学特性的数值研究","authors":"Yichao Geng,&nbsp;Xu Han,&nbsp;Jing Wang,&nbsp;Haibo Liu,&nbsp;Hua Zhang,&nbsp;Jianbao Wang,&nbsp;Luyang Shi,&nbsp;Tianfei Gao","doi":"10.1016/j.ijthermalsci.2024.109174","DOIUrl":null,"url":null,"abstract":"<div><p>Polycarbonate panels (PC panels) are state-of-the-art transparent insulating materials widely used in the construction industry due to their cavity structure, which provides exceptional thermal insulation and optimal optical performance. However, the inherent anisotropy of the three-dimensional cavity structure complicates radiative transfer and requires consideration of both azimuth and zenith angles in optical performance evaluation. This aspect has received limited attention in existing research. This study aims to accurately characterize the optical performance of PC panels through numerical simulations. A three-dimensional radiative transfer model based on the discrete ordinate radiation model is developed to solve the radiation transfer equation. The model's independency regarding mesh division, angular discretization, and accuracy is validated. The effects of incidence angle, geometric parameters, and optical properties of PC panels on optical performance are analyzed. The findings reveal a strong correlation between transmittance and absorption with variations in incident zenith and azimuth angles. The transmittance exhibits a consistent monotonic variation expressible as a rational bifunction. Notably, absorption peaks occur within specific solid angle ranges, with increased structural complexity resulting in heightened absorption and greater uncertainty. For conventional PC materials, maximum transmittance ranges from 46.9 % to 73 %, while maximum absorption ranges from 2.3 % to 13.5 %. Increasing absorption coefficients, refractive index, and surface scattering coefficients nonlinearly decrease transmittance while increasing absorption. Additionally, deviations in transmittance and absorption with azimuth angle amplify with an increase in non-horizontal structures. Sensitivity analysis indicates a significant influence of zenith angle on transmittance, and absorption coefficient predominantly affects absorption.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of optical characterization of polycarbonate panels\",\"authors\":\"Yichao Geng,&nbsp;Xu Han,&nbsp;Jing Wang,&nbsp;Haibo Liu,&nbsp;Hua Zhang,&nbsp;Jianbao Wang,&nbsp;Luyang Shi,&nbsp;Tianfei Gao\",\"doi\":\"10.1016/j.ijthermalsci.2024.109174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polycarbonate panels (PC panels) are state-of-the-art transparent insulating materials widely used in the construction industry due to their cavity structure, which provides exceptional thermal insulation and optimal optical performance. However, the inherent anisotropy of the three-dimensional cavity structure complicates radiative transfer and requires consideration of both azimuth and zenith angles in optical performance evaluation. This aspect has received limited attention in existing research. This study aims to accurately characterize the optical performance of PC panels through numerical simulations. A three-dimensional radiative transfer model based on the discrete ordinate radiation model is developed to solve the radiation transfer equation. The model's independency regarding mesh division, angular discretization, and accuracy is validated. The effects of incidence angle, geometric parameters, and optical properties of PC panels on optical performance are analyzed. The findings reveal a strong correlation between transmittance and absorption with variations in incident zenith and azimuth angles. The transmittance exhibits a consistent monotonic variation expressible as a rational bifunction. Notably, absorption peaks occur within specific solid angle ranges, with increased structural complexity resulting in heightened absorption and greater uncertainty. For conventional PC materials, maximum transmittance ranges from 46.9 % to 73 %, while maximum absorption ranges from 2.3 % to 13.5 %. Increasing absorption coefficients, refractive index, and surface scattering coefficients nonlinearly decrease transmittance while increasing absorption. Additionally, deviations in transmittance and absorption with azimuth angle amplify with an increase in non-horizontal structures. Sensitivity analysis indicates a significant influence of zenith angle on transmittance, and absorption coefficient predominantly affects absorption.</p></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924002965\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924002965","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚碳酸酯板(PC 板)是最先进的透明隔热材料,因其空腔结构可提供出色的隔热性能和最佳的光学性能而被广泛应用于建筑行业。然而,三维空腔结构固有的各向异性使辐射传递变得复杂,需要在光学性能评估中同时考虑方位角和天顶角。现有研究对这方面的关注有限。本研究旨在通过数值模拟准确描述 PC 面板的光学性能。基于离散序辐射模型开发了一个三维辐射传递模型,用于求解辐射传递方程。验证了该模型在网格划分、角度离散和精度方面的独立性。分析了入射角、几何参数和 PC 面板的光学特性对光学性能的影响。研究结果表明,透射率和吸收率与入射天顶角和方位角的变化密切相关。透射率呈现出一致的单调变化,可表示为有理双函数。值得注意的是,吸收峰值出现在特定的实体角范围内,结构复杂度增加会导致吸收增加,不确定性增大。对于传统 PC 材料,最大透射率范围为 46.9 % 到 73 %,而最大吸收率范围为 2.3 % 到 13.5 %。吸收系数、折射率和表面散射系数的增加会非线性地降低透射率,同时增加吸收率。此外,随着非水平结构的增加,透射率和吸收率与方位角的偏差也会扩大。灵敏度分析表明,天顶角对透射率有显著影响,而吸收系数主要影响吸收率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical investigation of optical characterization of polycarbonate panels

Polycarbonate panels (PC panels) are state-of-the-art transparent insulating materials widely used in the construction industry due to their cavity structure, which provides exceptional thermal insulation and optimal optical performance. However, the inherent anisotropy of the three-dimensional cavity structure complicates radiative transfer and requires consideration of both azimuth and zenith angles in optical performance evaluation. This aspect has received limited attention in existing research. This study aims to accurately characterize the optical performance of PC panels through numerical simulations. A three-dimensional radiative transfer model based on the discrete ordinate radiation model is developed to solve the radiation transfer equation. The model's independency regarding mesh division, angular discretization, and accuracy is validated. The effects of incidence angle, geometric parameters, and optical properties of PC panels on optical performance are analyzed. The findings reveal a strong correlation between transmittance and absorption with variations in incident zenith and azimuth angles. The transmittance exhibits a consistent monotonic variation expressible as a rational bifunction. Notably, absorption peaks occur within specific solid angle ranges, with increased structural complexity resulting in heightened absorption and greater uncertainty. For conventional PC materials, maximum transmittance ranges from 46.9 % to 73 %, while maximum absorption ranges from 2.3 % to 13.5 %. Increasing absorption coefficients, refractive index, and surface scattering coefficients nonlinearly decrease transmittance while increasing absorption. Additionally, deviations in transmittance and absorption with azimuth angle amplify with an increase in non-horizontal structures. Sensitivity analysis indicates a significant influence of zenith angle on transmittance, and absorption coefficient predominantly affects absorption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Modeling and investigating the fuel heating in injector nozzle hole under action of pressure drop and viscous friction Optimizing heat transfer and convective cell dynamics in 2D Rayleigh–Bénard convection: The effect of variable boundary temperature distribution An extended multi-segmented human bioheat model for high-altitude cold environments and its application in cold risk analysis Geometrical parameters optimization to improve the effective thermal conductivity of the gas diffusion layer for PEM fuel cell Numerical investigation of flow, heat transfer characteristics and structure improvement in a fluidized bed solar particle receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1