使用两步非热等离子工艺对涂层铜表面的池沸性能进行实验研究

IF 4.9 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Thermal Sciences Pub Date : 2024-06-08 DOI:10.1016/j.ijthermalsci.2024.109207
Hamid Reza Mohammadi , Hamed Taghvaei , Ataollah Rabiee
{"title":"使用两步非热等离子工艺对涂层铜表面的池沸性能进行实验研究","authors":"Hamid Reza Mohammadi ,&nbsp;Hamed Taghvaei ,&nbsp;Ataollah Rabiee","doi":"10.1016/j.ijthermalsci.2024.109207","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a stable hydrophilic thin layer resembling SiO<sub>x</sub> is formed on the copper surface by combining plasma polymerization using hexamethyldisiloxane (HMDSO) and Ar plasma activation. The effect of coating on the Heat Transfer Coefficient (HTC) and Critical Heat Flux (CHF) at two different subcooling temperatures is investigated through pool boiling experiments. It is found that the HTC and CHF of the modified surface improved by 42 % and 97 %, respectively. The chemical composition of the coating, as well as changes in surface roughness, wettability, and porosity, are studied using the Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectrometer (EDX), Fourier Transform Infrared (FT-IR) spectroscopy, and contact angle measurement. The boiling/cooling experiments for the plasma-coated surface show good stability, demonstrating that the surface characteristics remain stable even after three boiling/cooling cycles.</p></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of pool boiling performance on a coated copper surface using a two-step non-thermal plasma process\",\"authors\":\"Hamid Reza Mohammadi ,&nbsp;Hamed Taghvaei ,&nbsp;Ataollah Rabiee\",\"doi\":\"10.1016/j.ijthermalsci.2024.109207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a stable hydrophilic thin layer resembling SiO<sub>x</sub> is formed on the copper surface by combining plasma polymerization using hexamethyldisiloxane (HMDSO) and Ar plasma activation. The effect of coating on the Heat Transfer Coefficient (HTC) and Critical Heat Flux (CHF) at two different subcooling temperatures is investigated through pool boiling experiments. It is found that the HTC and CHF of the modified surface improved by 42 % and 97 %, respectively. The chemical composition of the coating, as well as changes in surface roughness, wettability, and porosity, are studied using the Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectrometer (EDX), Fourier Transform Infrared (FT-IR) spectroscopy, and contact angle measurement. The boiling/cooling experiments for the plasma-coated surface show good stability, demonstrating that the surface characteristics remain stable even after three boiling/cooling cycles.</p></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924003296\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924003296","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,通过结合使用六甲基二硅氧烷(HMDSO)的等离子聚合和氩气等离子活化,在铜表面形成了类似 SiOx 的稳定亲水薄层。通过池沸实验研究了涂层对两种不同过冷温度下传热系数(HTC)和临界热通量(CHF)的影响。结果发现,改性表面的 HTC 和 CHF 分别提高了 42% 和 97%。使用扫描电子显微镜 (SEM)、能量色散 X 射线光谱仪 (EDX)、傅立叶变换红外光谱仪 (FT-IR) 和接触角测量法研究了涂层的化学成分以及表面粗糙度、润湿性和孔隙率的变化。等离子涂层表面的沸腾/冷却实验显示出良好的稳定性,表明即使经过三次沸腾/冷却循环,表面特性仍能保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation of pool boiling performance on a coated copper surface using a two-step non-thermal plasma process

In this study, a stable hydrophilic thin layer resembling SiOx is formed on the copper surface by combining plasma polymerization using hexamethyldisiloxane (HMDSO) and Ar plasma activation. The effect of coating on the Heat Transfer Coefficient (HTC) and Critical Heat Flux (CHF) at two different subcooling temperatures is investigated through pool boiling experiments. It is found that the HTC and CHF of the modified surface improved by 42 % and 97 %, respectively. The chemical composition of the coating, as well as changes in surface roughness, wettability, and porosity, are studied using the Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectrometer (EDX), Fourier Transform Infrared (FT-IR) spectroscopy, and contact angle measurement. The boiling/cooling experiments for the plasma-coated surface show good stability, demonstrating that the surface characteristics remain stable even after three boiling/cooling cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermal Sciences
International Journal of Thermal Sciences 工程技术-工程:机械
CiteScore
8.10
自引率
11.10%
发文量
531
审稿时长
55 days
期刊介绍: The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review. The fundamental subjects considered within the scope of the journal are: * Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow * Forced, natural or mixed convection in reactive or non-reactive media * Single or multi–phase fluid flow with or without phase change * Near–and far–field radiative heat transfer * Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...) * Multiscale modelling The applied research topics include: * Heat exchangers, heat pipes, cooling processes * Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries) * Nano–and micro–technology for energy, space, biosystems and devices * Heat transport analysis in advanced systems * Impact of energy–related processes on environment, and emerging energy systems The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.
期刊最新文献
Modeling and investigating the fuel heating in injector nozzle hole under action of pressure drop and viscous friction Optimizing heat transfer and convective cell dynamics in 2D Rayleigh–Bénard convection: The effect of variable boundary temperature distribution An extended multi-segmented human bioheat model for high-altitude cold environments and its application in cold risk analysis Geometrical parameters optimization to improve the effective thermal conductivity of the gas diffusion layer for PEM fuel cell Numerical investigation of flow, heat transfer characteristics and structure improvement in a fluidized bed solar particle receiver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1