用于钒氧化还原液流电池的含有脂环结构的长侧链磺化无醚共聚苯并咪唑膜

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-06-07 DOI:10.1016/j.ssi.2024.116601
Xinxin Wang, Maolian Guo, Tao Ban, Yajie Wang, Jiawang Ma, Zihui Wang, Zhanpeng Jiang, Xiuling Zhu
{"title":"用于钒氧化还原液流电池的含有脂环结构的长侧链磺化无醚共聚苯并咪唑膜","authors":"Xinxin Wang,&nbsp;Maolian Guo,&nbsp;Tao Ban,&nbsp;Yajie Wang,&nbsp;Jiawang Ma,&nbsp;Zihui Wang,&nbsp;Zhanpeng Jiang,&nbsp;Xiuling Zhu","doi":"10.1016/j.ssi.2024.116601","DOIUrl":null,"url":null,"abstract":"<div><p>The stability and selectivity (balance between ionic conductivity and vanadium permeability) of the ion exchange membrane in vanadium redox flow batteries (VRFB) are critical factors that directly impact the battery's performance and lifetime. Herein, we synthesized an ether-free polybenzimidazole copolymer (mcPBI) with rigid benzene ring and flexible alicyclic structures in the polymer's backbone via solution condensation from 3,3′-diaminobenzidine, isophthalic acid and 1,4-cyclohexanedicarboxylic acid monomers. A series of sulfonated polybenzimidazoles (mcPBI-S-x) with long side chains and different grafting degrees were synthesized through grafting reactions, and membranes were prepared by the solution casting method. Microphase separation structure created by grafting accelerates ion transport. Protonated imidazole in an acidic environment enhances proton transport while impeding vanadium penetration due to the Donnan effect. Additionally, the ionic cross-linking between the sulfonic acid group and the imidazole group is in favor of dimensional stability maintenance. The ether-free polymer backbone is conducive to maintaining stability. The results show that all mcPBI-S-x membranes exhibit excellent ion selectivity. Specifically, the mcPBI-S-32% membrane demonstrates optimal ion selectivity (9.06 × 10<sup>7</sup> S s cm<sup>−3</sup>), low area resistance of 0.45 Ω cm<sup>2</sup>, vanadium permeability (0.76 × 10<sup>−10</sup> cm<sup>2</sup> s<sup>−1</sup>) and swelling ratio in sulfuric acid (4.3%). The battery with the mcPBI-S-32% membrane demonstrates a coulomb efficiency of 90.50%, a voltage efficiency of 85.69%, and an energy efficiency of 77.55% at a current density of 60 mA cm<sup>−2</sup>. What's more, the membrane shows excellent chemical stability, and the chemical structure of mcPBI-S-32% characterized by <sup>1</sup>H NMR does not change after 200 cycles at 120 mA cm<sup>−2</sup>.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A long-side-chain sulfonated ether-free copolybenzimidazole membrane containing alicyclic structure for vanadium redox flow batteries\",\"authors\":\"Xinxin Wang,&nbsp;Maolian Guo,&nbsp;Tao Ban,&nbsp;Yajie Wang,&nbsp;Jiawang Ma,&nbsp;Zihui Wang,&nbsp;Zhanpeng Jiang,&nbsp;Xiuling Zhu\",\"doi\":\"10.1016/j.ssi.2024.116601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stability and selectivity (balance between ionic conductivity and vanadium permeability) of the ion exchange membrane in vanadium redox flow batteries (VRFB) are critical factors that directly impact the battery's performance and lifetime. Herein, we synthesized an ether-free polybenzimidazole copolymer (mcPBI) with rigid benzene ring and flexible alicyclic structures in the polymer's backbone via solution condensation from 3,3′-diaminobenzidine, isophthalic acid and 1,4-cyclohexanedicarboxylic acid monomers. A series of sulfonated polybenzimidazoles (mcPBI-S-x) with long side chains and different grafting degrees were synthesized through grafting reactions, and membranes were prepared by the solution casting method. Microphase separation structure created by grafting accelerates ion transport. Protonated imidazole in an acidic environment enhances proton transport while impeding vanadium penetration due to the Donnan effect. Additionally, the ionic cross-linking between the sulfonic acid group and the imidazole group is in favor of dimensional stability maintenance. The ether-free polymer backbone is conducive to maintaining stability. The results show that all mcPBI-S-x membranes exhibit excellent ion selectivity. Specifically, the mcPBI-S-32% membrane demonstrates optimal ion selectivity (9.06 × 10<sup>7</sup> S s cm<sup>−3</sup>), low area resistance of 0.45 Ω cm<sup>2</sup>, vanadium permeability (0.76 × 10<sup>−10</sup> cm<sup>2</sup> s<sup>−1</sup>) and swelling ratio in sulfuric acid (4.3%). The battery with the mcPBI-S-32% membrane demonstrates a coulomb efficiency of 90.50%, a voltage efficiency of 85.69%, and an energy efficiency of 77.55% at a current density of 60 mA cm<sup>−2</sup>. What's more, the membrane shows excellent chemical stability, and the chemical structure of mcPBI-S-32% characterized by <sup>1</sup>H NMR does not change after 200 cycles at 120 mA cm<sup>−2</sup>.</p></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167273824001498\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824001498","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

钒氧化还原液流电池(VRFB)中离子交换膜的稳定性和选择性(离子导电性和钒渗透性之间的平衡)是直接影响电池性能和使用寿命的关键因素。在此,我们通过 3,3′-二氨基联苯胺、间苯二甲酸和 1,4-环己烷二羧酸单体的溶液缩合,合成了一种无醚聚苯并咪唑共聚物(mcPBI),该聚合物的骨架具有刚性苯环和柔性脂环结构。通过接枝反应合成了一系列具有长侧链和不同接枝度的磺化聚苯并咪唑(mcPBI-S-x),并采用溶液浇铸法制备了膜。接枝产生的微相分离结构可加速离子传输。酸性环境中的质子化咪唑增强了质子传输,同时由于唐南效应阻碍了钒的渗透。此外,磺酸基和咪唑基之间的离子交联有利于保持尺寸稳定性。无醚聚合物骨架有利于保持稳定。研究结果表明,所有 mcPBI-S-x 膜都具有出色的离子选择性。具体而言,mcPBI-S-32% 膜表现出最佳的离子选择性(9.06 × 107 S s cm-3)、0.45 Ω cm2 的低面积电阻、钒渗透性(0.76 × 10-10 cm2 s-1)以及在硫酸中的膨胀率(4.3%)。使用 mcPBI-S-32% 隔膜的电池在电流密度为 60 mA cm-2 时的库仑效率为 90.50%,电压效率为 85.69%,能量效率为 77.55%。更重要的是,该膜显示出卓越的化学稳定性,在 120 mA cm-2 下循环 200 次后,用 1H NMR 表征的 mcPBI-S-32% 化学结构没有发生变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A long-side-chain sulfonated ether-free copolybenzimidazole membrane containing alicyclic structure for vanadium redox flow batteries

The stability and selectivity (balance between ionic conductivity and vanadium permeability) of the ion exchange membrane in vanadium redox flow batteries (VRFB) are critical factors that directly impact the battery's performance and lifetime. Herein, we synthesized an ether-free polybenzimidazole copolymer (mcPBI) with rigid benzene ring and flexible alicyclic structures in the polymer's backbone via solution condensation from 3,3′-diaminobenzidine, isophthalic acid and 1,4-cyclohexanedicarboxylic acid monomers. A series of sulfonated polybenzimidazoles (mcPBI-S-x) with long side chains and different grafting degrees were synthesized through grafting reactions, and membranes were prepared by the solution casting method. Microphase separation structure created by grafting accelerates ion transport. Protonated imidazole in an acidic environment enhances proton transport while impeding vanadium penetration due to the Donnan effect. Additionally, the ionic cross-linking between the sulfonic acid group and the imidazole group is in favor of dimensional stability maintenance. The ether-free polymer backbone is conducive to maintaining stability. The results show that all mcPBI-S-x membranes exhibit excellent ion selectivity. Specifically, the mcPBI-S-32% membrane demonstrates optimal ion selectivity (9.06 × 107 S s cm−3), low area resistance of 0.45 Ω cm2, vanadium permeability (0.76 × 10−10 cm2 s−1) and swelling ratio in sulfuric acid (4.3%). The battery with the mcPBI-S-32% membrane demonstrates a coulomb efficiency of 90.50%, a voltage efficiency of 85.69%, and an energy efficiency of 77.55% at a current density of 60 mA cm−2. What's more, the membrane shows excellent chemical stability, and the chemical structure of mcPBI-S-32% characterized by 1H NMR does not change after 200 cycles at 120 mA cm−2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Impact of polypyrrole coating on the electrochemical properties of Li1.04Fe0.3Mn0.7PO4 cathode materials Surrogate modeling for transient electrochemical potential analysis for SOFC using proper orthogonal decomposition Construction of conductive PTh-promoted NaTi2(PO4)3 nanocomposite with two-electron reactions for sodium energy storage Dependence of electrical properties on the concentration of tantalum in ceramics Li0.12Na0.88TayNb1-yO3 (y = 0.15, 0.2, 0.25) obtained at high pressure New hybrid materials based on cardo polybenzimidazole PBI-O-PhT and modified silica with covalent silanol cross-linking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1