{"title":"通过碳纳米管插入实现鸡蛋白蛋白光电人工突触电子特性的第一性原理研究(Adv.)","authors":"Lu Wang, Tianyu Yang, Yuehang Ju, Dianzhong Wen","doi":"10.1002/aelm.202470024","DOIUrl":null,"url":null,"abstract":"<p><b>Optoelectronic Artificial Synapses</b></p><p>Lu Wang and co-workers have fabricated a bioartificial synapse composited with egg albumen and carbon nanotubes (see article number 2300631). The electrical characteristics of the contact interface between carbon nanotubes doped with Fe substitution and Al electrode are analyzed by first principles, and the adsorption, charge distribution, and band structure between them are studied.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"10 6","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202470024","citationCount":"0","resultStr":"{\"title\":\"First-Principles Study of the Electronic Properties of Egg Albumen Optoelectronic Artificial Synapses by Carbon Nanotube Insertion (Adv. Electron. Mater. 6/2024)\",\"authors\":\"Lu Wang, Tianyu Yang, Yuehang Ju, Dianzhong Wen\",\"doi\":\"10.1002/aelm.202470024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Optoelectronic Artificial Synapses</b></p><p>Lu Wang and co-workers have fabricated a bioartificial synapse composited with egg albumen and carbon nanotubes (see article number 2300631). The electrical characteristics of the contact interface between carbon nanotubes doped with Fe substitution and Al electrode are analyzed by first principles, and the adsorption, charge distribution, and band structure between them are studied.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"10 6\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202470024\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202470024\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202470024","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
光电人工突触Lu Wang 及其合作者制作了一种由鸡蛋白蛋白和碳纳米管组成的生物人工突触(见文章编号 2300631)。通过第一性原理分析了掺杂铁的碳纳米管与铝电极接触界面的电学特性,并研究了它们之间的吸附、电荷分布和带状结构。
First-Principles Study of the Electronic Properties of Egg Albumen Optoelectronic Artificial Synapses by Carbon Nanotube Insertion (Adv. Electron. Mater. 6/2024)
Optoelectronic Artificial Synapses
Lu Wang and co-workers have fabricated a bioartificial synapse composited with egg albumen and carbon nanotubes (see article number 2300631). The electrical characteristics of the contact interface between carbon nanotubes doped with Fe substitution and Al electrode are analyzed by first principles, and the adsorption, charge distribution, and band structure between them are studied.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.