{"title":"通过生物膜生物反应器中的连续发酵实现可持续的 Menaquinone-7 生产。","authors":"Aydin Berenjian, Ehsan Mahdinia, Ali Demirci","doi":"10.1007/s00449-024-03040-1","DOIUrl":null,"url":null,"abstract":"<p><p>Menaquinone-7 (MK-7), a vital vitamin with numerous health benefits, is synthesized and secreted extracellularly by the formation of biofilm, dominantly in Bacillus strains. Our team developed an innovative biofilm reactor utilizing Bacillus subtilis natto cells to foster biofilm growth on plastic composite supports to produce MK-7. Continuous fermentation in biofilm reactors offers a promising strategy for achieving sustainable and efficient production of Menaquinone-7 (MK-7). Unlike conventional batch fermentation, continuous biofilm reactors maintain a steady state of operation, which reduces resource consumption and waste generation, contributing to sustainability. By optimizing fermentation conditions, MK-7 production was significantly enhanced in this study, demonstrating the potential for sustainable industrial-scale production. To determine the optimal operational parameters, various dilution rates were tested. These rates were selected based on their potential to enhance nutrient supply and biofilm stability, thereby improving MK-7 production. By carefully considering the fermentation conditions and systematically varying the dilution rates, MK-7 production was significantly enhanced during continuous fermentation. The MK-7 productivity was found to increase from 0.12 mg/L/h to 0.33 mg/L/h with a dilution rate increment from 0.007 to 0.042 h<sup>-1</sup>). This range was chosen to explore the impact of various nutrient supply rates on MK-7 production and to identify the optimal conditions for maximizing productivity. However, a further increase in the dilution rate to 0.084 h<sup>-1</sup> led to reduced productivity at approximately 0.16 mg/L/h, likely due to insufficient retention time for effective biofilm formation. Consequently, a dilution rate of 0.042 h<sup>-1</sup> exhibited the highest productivity of 0.33 mg/L/h, outperforming all investigated dilution rates and demonstrating the critical balance between nutrient supply and retention time in continuous fermentation. These findings validate the feasibility of operating continuous fermentation at a 0.084 h<sup>-1</sup> dilution rate, corresponding to a 48 h retention time, to achieve the highest MK-7 productivity compared to conventional batch fermentation. The significant advancements achieved in enhancing Menaquinone-7 (MK-7) productivity through continuous fermentation at optimal dilution rates in the present work indicate promising prospects for even greater efficiency and sustainability in MK-7 production through future developments.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":"1107-1116"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sustainable menaquinone-7 production through continuous fermentation in biofilm bioreactors.\",\"authors\":\"Aydin Berenjian, Ehsan Mahdinia, Ali Demirci\",\"doi\":\"10.1007/s00449-024-03040-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Menaquinone-7 (MK-7), a vital vitamin with numerous health benefits, is synthesized and secreted extracellularly by the formation of biofilm, dominantly in Bacillus strains. Our team developed an innovative biofilm reactor utilizing Bacillus subtilis natto cells to foster biofilm growth on plastic composite supports to produce MK-7. Continuous fermentation in biofilm reactors offers a promising strategy for achieving sustainable and efficient production of Menaquinone-7 (MK-7). Unlike conventional batch fermentation, continuous biofilm reactors maintain a steady state of operation, which reduces resource consumption and waste generation, contributing to sustainability. By optimizing fermentation conditions, MK-7 production was significantly enhanced in this study, demonstrating the potential for sustainable industrial-scale production. To determine the optimal operational parameters, various dilution rates were tested. These rates were selected based on their potential to enhance nutrient supply and biofilm stability, thereby improving MK-7 production. By carefully considering the fermentation conditions and systematically varying the dilution rates, MK-7 production was significantly enhanced during continuous fermentation. The MK-7 productivity was found to increase from 0.12 mg/L/h to 0.33 mg/L/h with a dilution rate increment from 0.007 to 0.042 h<sup>-1</sup>). This range was chosen to explore the impact of various nutrient supply rates on MK-7 production and to identify the optimal conditions for maximizing productivity. However, a further increase in the dilution rate to 0.084 h<sup>-1</sup> led to reduced productivity at approximately 0.16 mg/L/h, likely due to insufficient retention time for effective biofilm formation. Consequently, a dilution rate of 0.042 h<sup>-1</sup> exhibited the highest productivity of 0.33 mg/L/h, outperforming all investigated dilution rates and demonstrating the critical balance between nutrient supply and retention time in continuous fermentation. These findings validate the feasibility of operating continuous fermentation at a 0.084 h<sup>-1</sup> dilution rate, corresponding to a 48 h retention time, to achieve the highest MK-7 productivity compared to conventional batch fermentation. The significant advancements achieved in enhancing Menaquinone-7 (MK-7) productivity through continuous fermentation at optimal dilution rates in the present work indicate promising prospects for even greater efficiency and sustainability in MK-7 production through future developments.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"1107-1116\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03040-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03040-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Sustainable menaquinone-7 production through continuous fermentation in biofilm bioreactors.
Menaquinone-7 (MK-7), a vital vitamin with numerous health benefits, is synthesized and secreted extracellularly by the formation of biofilm, dominantly in Bacillus strains. Our team developed an innovative biofilm reactor utilizing Bacillus subtilis natto cells to foster biofilm growth on plastic composite supports to produce MK-7. Continuous fermentation in biofilm reactors offers a promising strategy for achieving sustainable and efficient production of Menaquinone-7 (MK-7). Unlike conventional batch fermentation, continuous biofilm reactors maintain a steady state of operation, which reduces resource consumption and waste generation, contributing to sustainability. By optimizing fermentation conditions, MK-7 production was significantly enhanced in this study, demonstrating the potential for sustainable industrial-scale production. To determine the optimal operational parameters, various dilution rates were tested. These rates were selected based on their potential to enhance nutrient supply and biofilm stability, thereby improving MK-7 production. By carefully considering the fermentation conditions and systematically varying the dilution rates, MK-7 production was significantly enhanced during continuous fermentation. The MK-7 productivity was found to increase from 0.12 mg/L/h to 0.33 mg/L/h with a dilution rate increment from 0.007 to 0.042 h-1). This range was chosen to explore the impact of various nutrient supply rates on MK-7 production and to identify the optimal conditions for maximizing productivity. However, a further increase in the dilution rate to 0.084 h-1 led to reduced productivity at approximately 0.16 mg/L/h, likely due to insufficient retention time for effective biofilm formation. Consequently, a dilution rate of 0.042 h-1 exhibited the highest productivity of 0.33 mg/L/h, outperforming all investigated dilution rates and demonstrating the critical balance between nutrient supply and retention time in continuous fermentation. These findings validate the feasibility of operating continuous fermentation at a 0.084 h-1 dilution rate, corresponding to a 48 h retention time, to achieve the highest MK-7 productivity compared to conventional batch fermentation. The significant advancements achieved in enhancing Menaquinone-7 (MK-7) productivity through continuous fermentation at optimal dilution rates in the present work indicate promising prospects for even greater efficiency and sustainability in MK-7 production through future developments.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.