Lu Yang;Yiwen Bai;Fenglei Ren;Chongke Bi;Ronghui Zhang
{"title":"LCFNets:自动驾驶实时语义分割的补偿策略","authors":"Lu Yang;Yiwen Bai;Fenglei Ren;Chongke Bi;Ronghui Zhang","doi":"10.1109/TIV.2024.3363830","DOIUrl":null,"url":null,"abstract":"Semantic segmentation is an important research topic in the environment perception of intelligent vehicles. Many semantic segmentation networks based on bilateral architecture have been proven effective. However, semantic segmentation networks based on this architecture has the risk of pixel classification errors and small objects being overwhelmed. In this paper, we solve the problem by proposing a novel three-branch architecture network called LCFNets. Compared to existing bilateral architecture, LCFNets introduce compensation branch for the first time to preserve the features of original images. Through two efficient modules, Lightweight Detail Guidance Fusion Module (L-DGF) and Lightweight Semantic Guidance Fusion Module (L-SGF), detail and semantic branches are allowed to selectively extract features from this branch. To balance the three-branch features and guide them to fuse effectively, a novel aggregation layer is designed. Depth-wise Convolution Pyramid Pooling module (DCPP) and Total Guidance Fusion Module (TGF) enable the aggregation layer to extract the global receptive field and realize multi-branch aggregation with fewer calculation complexity. Extensive experiments on Cityscapes and CamVid datasets have shown that our family of LCFNets provide a better trade-off between speed and accuracy. With the full resolution input and no ImageNet pre-training, LCFNet-slim achieves 76.86% mIoU at 114.36 FPS and LCFNet achieves 77.96% mIoU at 92.37 FPS on Cityscapes. On the other hand, LCFNet-super achieves 79.10% mIoU at 47.46 FPS.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 4","pages":"4715-4729"},"PeriodicalIF":14.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LCFNets: Compensation Strategy for Real-Time Semantic Segmentation of Autonomous Driving\",\"authors\":\"Lu Yang;Yiwen Bai;Fenglei Ren;Chongke Bi;Ronghui Zhang\",\"doi\":\"10.1109/TIV.2024.3363830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic segmentation is an important research topic in the environment perception of intelligent vehicles. Many semantic segmentation networks based on bilateral architecture have been proven effective. However, semantic segmentation networks based on this architecture has the risk of pixel classification errors and small objects being overwhelmed. In this paper, we solve the problem by proposing a novel three-branch architecture network called LCFNets. Compared to existing bilateral architecture, LCFNets introduce compensation branch for the first time to preserve the features of original images. Through two efficient modules, Lightweight Detail Guidance Fusion Module (L-DGF) and Lightweight Semantic Guidance Fusion Module (L-SGF), detail and semantic branches are allowed to selectively extract features from this branch. To balance the three-branch features and guide them to fuse effectively, a novel aggregation layer is designed. Depth-wise Convolution Pyramid Pooling module (DCPP) and Total Guidance Fusion Module (TGF) enable the aggregation layer to extract the global receptive field and realize multi-branch aggregation with fewer calculation complexity. Extensive experiments on Cityscapes and CamVid datasets have shown that our family of LCFNets provide a better trade-off between speed and accuracy. With the full resolution input and no ImageNet pre-training, LCFNet-slim achieves 76.86% mIoU at 114.36 FPS and LCFNet achieves 77.96% mIoU at 92.37 FPS on Cityscapes. On the other hand, LCFNet-super achieves 79.10% mIoU at 47.46 FPS.\",\"PeriodicalId\":36532,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Vehicles\",\"volume\":\"9 4\",\"pages\":\"4715-4729\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10428050/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10428050/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
LCFNets: Compensation Strategy for Real-Time Semantic Segmentation of Autonomous Driving
Semantic segmentation is an important research topic in the environment perception of intelligent vehicles. Many semantic segmentation networks based on bilateral architecture have been proven effective. However, semantic segmentation networks based on this architecture has the risk of pixel classification errors and small objects being overwhelmed. In this paper, we solve the problem by proposing a novel three-branch architecture network called LCFNets. Compared to existing bilateral architecture, LCFNets introduce compensation branch for the first time to preserve the features of original images. Through two efficient modules, Lightweight Detail Guidance Fusion Module (L-DGF) and Lightweight Semantic Guidance Fusion Module (L-SGF), detail and semantic branches are allowed to selectively extract features from this branch. To balance the three-branch features and guide them to fuse effectively, a novel aggregation layer is designed. Depth-wise Convolution Pyramid Pooling module (DCPP) and Total Guidance Fusion Module (TGF) enable the aggregation layer to extract the global receptive field and realize multi-branch aggregation with fewer calculation complexity. Extensive experiments on Cityscapes and CamVid datasets have shown that our family of LCFNets provide a better trade-off between speed and accuracy. With the full resolution input and no ImageNet pre-training, LCFNet-slim achieves 76.86% mIoU at 114.36 FPS and LCFNet achieves 77.96% mIoU at 92.37 FPS on Cityscapes. On the other hand, LCFNet-super achieves 79.10% mIoU at 47.46 FPS.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.