{"title":"用于分析多种低浓度挥发性有机化合物的微型气相色谱系统综述:预浓缩、分离、检测、集成与挑战","authors":"Yeongseok Lee, Hyeonwoo Son, Junwoo Lee, Si-Hyung Lim","doi":"10.1186/s40486-024-00203-3","DOIUrl":null,"url":null,"abstract":"<div><p>As the dangers of volatile organic compounds (VOCs) and their potential as non-invasive diagnosis biomarkers have been reported, there has been a need for instrument capable of real-time and in-situ monitoring of multiple low-concentration VOCs in indoor air or human metabolites. A promising technology that can qualitatively and quantitatively analyze numerous VOCs as an alternative to conventional bench-top instruments is a micro-gas chromatography (µ-GC) system, which integrates three main components: a micro-gas preconcentrator, a µ-GC column, and a mini- or micro-detector fabricated using microelectromechanical system (MEMS) processes. This review covers the integration methods, features, and analysis capabilities of recently developed µ-GC systems and examines the materials, designs, and principles of the three main components. In addition, the challenging issues that must be addressed for the commercialization of this technology are discussed.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"12 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00203-3","citationCount":"0","resultStr":"{\"title\":\"Review on micro-gas chromatography system for analysis of multiple low-concentration volatile organic compounds: preconcentration, separation, detection, integration, and challenges\",\"authors\":\"Yeongseok Lee, Hyeonwoo Son, Junwoo Lee, Si-Hyung Lim\",\"doi\":\"10.1186/s40486-024-00203-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the dangers of volatile organic compounds (VOCs) and their potential as non-invasive diagnosis biomarkers have been reported, there has been a need for instrument capable of real-time and in-situ monitoring of multiple low-concentration VOCs in indoor air or human metabolites. A promising technology that can qualitatively and quantitatively analyze numerous VOCs as an alternative to conventional bench-top instruments is a micro-gas chromatography (µ-GC) system, which integrates three main components: a micro-gas preconcentrator, a µ-GC column, and a mini- or micro-detector fabricated using microelectromechanical system (MEMS) processes. This review covers the integration methods, features, and analysis capabilities of recently developed µ-GC systems and examines the materials, designs, and principles of the three main components. In addition, the challenging issues that must be addressed for the commercialization of this technology are discussed.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-024-00203-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-024-00203-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-024-00203-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Review on micro-gas chromatography system for analysis of multiple low-concentration volatile organic compounds: preconcentration, separation, detection, integration, and challenges
As the dangers of volatile organic compounds (VOCs) and their potential as non-invasive diagnosis biomarkers have been reported, there has been a need for instrument capable of real-time and in-situ monitoring of multiple low-concentration VOCs in indoor air or human metabolites. A promising technology that can qualitatively and quantitatively analyze numerous VOCs as an alternative to conventional bench-top instruments is a micro-gas chromatography (µ-GC) system, which integrates three main components: a micro-gas preconcentrator, a µ-GC column, and a mini- or micro-detector fabricated using microelectromechanical system (MEMS) processes. This review covers the integration methods, features, and analysis capabilities of recently developed µ-GC systems and examines the materials, designs, and principles of the three main components. In addition, the challenging issues that must be addressed for the commercialization of this technology are discussed.