{"title":"利用环境振动进行贝叶斯频谱分解以实现高效模态识别","authors":"Zhouquan Feng, Jiren Zhang, Lambros Katafygiotis, Xugang Hua, Zhengqing Chen","doi":"10.1155/2024/5137641","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Modal parameter identification via ambient vibration is popular but faces challenges from uncertainties due to unknown inputs and low signal-to-noise ratio. Bayesian methods are gaining increasing attention for operational modal identification due to their ability to quantify uncertainties. However, improvements in computational efficiency are needed, particularly when addressing numerous modes and degrees of freedom. To address this challenge, this study proposes an innovative approach, termed the “Bayesian spectral decomposition” method (BSD), employing the decompose-and-conquer strategy. This novel method, operating within the frequency domain, identifies each mode individually by exploiting their inherent separated modal characteristics. For each mode, the response spectrum matrix undergoes an eigenvalue decomposition, yielding crucial eigenvalues (incorporating frequency and damping information) and eigenvectors (containing mode shape information). Subsequently, statistical properties of the eigenvalues and eigenvectors are utilized to establish likelihood functions for Bayesian parameter identification. By combining prior information, the posterior probability distribution functions of modal parameters are derived. The optimal solution is then obtained by resolving the maximum posterior probability distribution function problem. To further quantify the uncertainty of modal parameters, Gaussian distributions are employed to approximate the posterior probability distribution functions. The adoption of the decomposition approach circumvents the joint identification of all modal parameters, substantially reducing the parameter dimensions for optimization. Consequently, this strategy leads to decreased computational complexity and significantly improved computational stability. The effectiveness of the BSD is confirmed through simulated data generated from an 8-story shear building as well as measured data collected from both an experimental shear frame and the Canton Tower. The results demonstrate that the proposed method achieves high accuracy in identifying modal parameters, greatly improves computational efficiency, and effectively quantifies the uncertainties in modal parameters.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5137641","citationCount":"0","resultStr":"{\"title\":\"Bayesian Spectral Decomposition for Efficient Modal Identification Using Ambient Vibration\",\"authors\":\"Zhouquan Feng, Jiren Zhang, Lambros Katafygiotis, Xugang Hua, Zhengqing Chen\",\"doi\":\"10.1155/2024/5137641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Modal parameter identification via ambient vibration is popular but faces challenges from uncertainties due to unknown inputs and low signal-to-noise ratio. Bayesian methods are gaining increasing attention for operational modal identification due to their ability to quantify uncertainties. However, improvements in computational efficiency are needed, particularly when addressing numerous modes and degrees of freedom. To address this challenge, this study proposes an innovative approach, termed the “Bayesian spectral decomposition” method (BSD), employing the decompose-and-conquer strategy. This novel method, operating within the frequency domain, identifies each mode individually by exploiting their inherent separated modal characteristics. For each mode, the response spectrum matrix undergoes an eigenvalue decomposition, yielding crucial eigenvalues (incorporating frequency and damping information) and eigenvectors (containing mode shape information). Subsequently, statistical properties of the eigenvalues and eigenvectors are utilized to establish likelihood functions for Bayesian parameter identification. By combining prior information, the posterior probability distribution functions of modal parameters are derived. The optimal solution is then obtained by resolving the maximum posterior probability distribution function problem. To further quantify the uncertainty of modal parameters, Gaussian distributions are employed to approximate the posterior probability distribution functions. The adoption of the decomposition approach circumvents the joint identification of all modal parameters, substantially reducing the parameter dimensions for optimization. Consequently, this strategy leads to decreased computational complexity and significantly improved computational stability. The effectiveness of the BSD is confirmed through simulated data generated from an 8-story shear building as well as measured data collected from both an experimental shear frame and the Canton Tower. The results demonstrate that the proposed method achieves high accuracy in identifying modal parameters, greatly improves computational efficiency, and effectively quantifies the uncertainties in modal parameters.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5137641\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5137641\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5137641","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Bayesian Spectral Decomposition for Efficient Modal Identification Using Ambient Vibration
Modal parameter identification via ambient vibration is popular but faces challenges from uncertainties due to unknown inputs and low signal-to-noise ratio. Bayesian methods are gaining increasing attention for operational modal identification due to their ability to quantify uncertainties. However, improvements in computational efficiency are needed, particularly when addressing numerous modes and degrees of freedom. To address this challenge, this study proposes an innovative approach, termed the “Bayesian spectral decomposition” method (BSD), employing the decompose-and-conquer strategy. This novel method, operating within the frequency domain, identifies each mode individually by exploiting their inherent separated modal characteristics. For each mode, the response spectrum matrix undergoes an eigenvalue decomposition, yielding crucial eigenvalues (incorporating frequency and damping information) and eigenvectors (containing mode shape information). Subsequently, statistical properties of the eigenvalues and eigenvectors are utilized to establish likelihood functions for Bayesian parameter identification. By combining prior information, the posterior probability distribution functions of modal parameters are derived. The optimal solution is then obtained by resolving the maximum posterior probability distribution function problem. To further quantify the uncertainty of modal parameters, Gaussian distributions are employed to approximate the posterior probability distribution functions. The adoption of the decomposition approach circumvents the joint identification of all modal parameters, substantially reducing the parameter dimensions for optimization. Consequently, this strategy leads to decreased computational complexity and significantly improved computational stability. The effectiveness of the BSD is confirmed through simulated data generated from an 8-story shear building as well as measured data collected from both an experimental shear frame and the Canton Tower. The results demonstrate that the proposed method achieves high accuracy in identifying modal parameters, greatly improves computational efficiency, and effectively quantifies the uncertainties in modal parameters.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.