{"title":"利用 GPU 优化技术加速 OptiGAN--粒子模拟 GAN。","authors":"Anirudh Srikanth, Carlotta Trigila, Emilie Roncali","doi":"10.1088/2632-2153/ad51c9","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for specialized hardware to train AI models has increased in tandem with the increase in the model complexity over the recent years. Graphics processing unit (GPU) is one such hardware that is capable of parallelizing operations performed on a large chunk of data. Companies like Nvidia, AMD, and Google have been constantly scaling-up the hardware performance as fast as they can. Nevertheless, there is still a gap between the required processing power and processing capacity of the hardware. To increase the hardware utilization, the software has to be optimized too. In this paper, we present some general GPU optimization techniques we used to efficiently train the optiGAN model, a Generative Adversarial Network that is capable of generating multidimensional probability distributions of optical photons at the photodetector face in radiation detectors, on an 8GB Nvidia Quadro RTX 4000 GPU. We analyze and compare the performances of all the optimizations based on the execution time and the memory consumed using the Nvidia Nsight Systems profiler tool. The optimizations gave approximately a 4.5x increase in the runtime performance when compared to a naive training on the GPU, without compromising the model performance. Finally we discuss optiGANs future work and how we are planning to scale the model on GPUs.</p>","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"5 2","pages":"027001"},"PeriodicalIF":6.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170465/pdf/","citationCount":"0","resultStr":"{\"title\":\"GPU optimization techniques to accelerate optiGAN-a particle simulation GAN.\",\"authors\":\"Anirudh Srikanth, Carlotta Trigila, Emilie Roncali\",\"doi\":\"10.1088/2632-2153/ad51c9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The demand for specialized hardware to train AI models has increased in tandem with the increase in the model complexity over the recent years. Graphics processing unit (GPU) is one such hardware that is capable of parallelizing operations performed on a large chunk of data. Companies like Nvidia, AMD, and Google have been constantly scaling-up the hardware performance as fast as they can. Nevertheless, there is still a gap between the required processing power and processing capacity of the hardware. To increase the hardware utilization, the software has to be optimized too. In this paper, we present some general GPU optimization techniques we used to efficiently train the optiGAN model, a Generative Adversarial Network that is capable of generating multidimensional probability distributions of optical photons at the photodetector face in radiation detectors, on an 8GB Nvidia Quadro RTX 4000 GPU. We analyze and compare the performances of all the optimizations based on the execution time and the memory consumed using the Nvidia Nsight Systems profiler tool. The optimizations gave approximately a 4.5x increase in the runtime performance when compared to a naive training on the GPU, without compromising the model performance. Finally we discuss optiGANs future work and how we are planning to scale the model on GPUs.</p>\",\"PeriodicalId\":33757,\"journal\":{\"name\":\"Machine Learning Science and Technology\",\"volume\":\"5 2\",\"pages\":\"027001\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170465/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2632-2153/ad51c9\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad51c9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
GPU optimization techniques to accelerate optiGAN-a particle simulation GAN.
The demand for specialized hardware to train AI models has increased in tandem with the increase in the model complexity over the recent years. Graphics processing unit (GPU) is one such hardware that is capable of parallelizing operations performed on a large chunk of data. Companies like Nvidia, AMD, and Google have been constantly scaling-up the hardware performance as fast as they can. Nevertheless, there is still a gap between the required processing power and processing capacity of the hardware. To increase the hardware utilization, the software has to be optimized too. In this paper, we present some general GPU optimization techniques we used to efficiently train the optiGAN model, a Generative Adversarial Network that is capable of generating multidimensional probability distributions of optical photons at the photodetector face in radiation detectors, on an 8GB Nvidia Quadro RTX 4000 GPU. We analyze and compare the performances of all the optimizations based on the execution time and the memory consumed using the Nvidia Nsight Systems profiler tool. The optimizations gave approximately a 4.5x increase in the runtime performance when compared to a naive training on the GPU, without compromising the model performance. Finally we discuss optiGANs future work and how we are planning to scale the model on GPUs.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.