采用多孔 Ti3C2Tx MXene 电极和磷酸电解液的耐低温水性质子电池

IF 4.6 4区 化学 Q2 ELECTROCHEMISTRY Batteries Pub Date : 2024-06-14 DOI:10.3390/batteries10060207
Jun Zhu, Xude Li, Bingqing Hu, Shanhai Ge, Jiang Xu
{"title":"采用多孔 Ti3C2Tx MXene 电极和磷酸电解液的耐低温水性质子电池","authors":"Jun Zhu, Xude Li, Bingqing Hu, Shanhai Ge, Jiang Xu","doi":"10.3390/batteries10060207","DOIUrl":null,"url":null,"abstract":"Supercapacitors have long suffered from low energy density. Here, we present a high-energy, high-safety, and temperature-adaptable aqueous proton battery utilizing two-dimensional Ti3C2Tx MXenes as anode materials. Additionally, our work aims to provide further insights into the energy storage mechanism of Ti3C2Tx in acid electrolytes. Our findings reveal that the ion transport mechanism of Ti3C2Tx remains consistent in both H2SO4 and H3PO4 electrolytes. The mode of charge transfer depends on its terminal groups. Specifically, the hydrogen bonding network formed by water molecules adsorbed by hydroxyl functional groups under van der Waals forces enables charge transfer in the form of naked H+ through the Grotthuss mechanism. In contrast, the hydrophobic channel formed by oxygen and halogen terminal groups facilitates rapid charge transfers in the form of hydronium ion via the vehicle mechanism, owing to negligible interfacial effect. Herein, we propose an aqueous proton battery based on porous hydroxy-poor Ti3C2Tx MXene anode and pre-protonated CuII[FeIII(CN)6]2/3∙4H2O (H-TBA) cathode in a 9.5 M H3PO4 solution. This proton battery operates through hydrated H+/H+ transfer, leading to good electrochemical performance, as evidenced by 26 Wh kg−1 energy density and 162 kW kg−1 power density at room temperature and an energy density of 17 Wh kg−1 and a power density of 7.4 kW kg−1 even at −60 °C.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Temperature-Tolerant Aqueous Proton Battery with Porous Ti3C2Tx MXene Electrode and Phosphoric Acid Electrolyte\",\"authors\":\"Jun Zhu, Xude Li, Bingqing Hu, Shanhai Ge, Jiang Xu\",\"doi\":\"10.3390/batteries10060207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supercapacitors have long suffered from low energy density. Here, we present a high-energy, high-safety, and temperature-adaptable aqueous proton battery utilizing two-dimensional Ti3C2Tx MXenes as anode materials. Additionally, our work aims to provide further insights into the energy storage mechanism of Ti3C2Tx in acid electrolytes. Our findings reveal that the ion transport mechanism of Ti3C2Tx remains consistent in both H2SO4 and H3PO4 electrolytes. The mode of charge transfer depends on its terminal groups. Specifically, the hydrogen bonding network formed by water molecules adsorbed by hydroxyl functional groups under van der Waals forces enables charge transfer in the form of naked H+ through the Grotthuss mechanism. In contrast, the hydrophobic channel formed by oxygen and halogen terminal groups facilitates rapid charge transfers in the form of hydronium ion via the vehicle mechanism, owing to negligible interfacial effect. Herein, we propose an aqueous proton battery based on porous hydroxy-poor Ti3C2Tx MXene anode and pre-protonated CuII[FeIII(CN)6]2/3∙4H2O (H-TBA) cathode in a 9.5 M H3PO4 solution. This proton battery operates through hydrated H+/H+ transfer, leading to good electrochemical performance, as evidenced by 26 Wh kg−1 energy density and 162 kW kg−1 power density at room temperature and an energy density of 17 Wh kg−1 and a power density of 7.4 kW kg−1 even at −60 °C.\",\"PeriodicalId\":8755,\"journal\":{\"name\":\"Batteries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/batteries10060207\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10060207","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,超级电容器一直存在能量密度低的问题。在这里,我们利用二维 Ti3C2Tx MXenes 作为阳极材料,提出了一种高能量、高安全性和温度适应性强的水性质子电池。此外,我们的研究还旨在进一步深入了解 Ti3C2Tx 在酸性电解质中的储能机制。我们的研究结果表明,Ti3C2Tx 在 H2SO4 和 H3PO4 电解质中的离子传输机制保持一致。电荷转移模式取决于其末端基团。具体来说,羟基官能团吸附的水分子在范德华力作用下形成的氢键网络可通过 Grotthuss 机制实现裸 H+ 形式的电荷转移。与此相反,氧和卤素末端基团形成的疏水通道由于可忽略的界面效应,可通过载体机制促进氢离子形式的电荷快速转移。在此,我们提出了一种水性质子电池,它基于多孔疏水性 Ti3C2Tx MXene 阳极和 9.5 M H3PO4 溶液中的预质子化 CuII[FeIII(CN)6]2/3∙4H2O (H-TBA)阴极。这种质子电池通过水合 H+/H+ 转移进行工作,具有良好的电化学性能,室温下的能量密度为 26 Wh kg-1,功率密度为 162 kW kg-1,即使在零下 60 °C,能量密度也达到 17 Wh kg-1,功率密度为 7.4 kW kg-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Temperature-Tolerant Aqueous Proton Battery with Porous Ti3C2Tx MXene Electrode and Phosphoric Acid Electrolyte
Supercapacitors have long suffered from low energy density. Here, we present a high-energy, high-safety, and temperature-adaptable aqueous proton battery utilizing two-dimensional Ti3C2Tx MXenes as anode materials. Additionally, our work aims to provide further insights into the energy storage mechanism of Ti3C2Tx in acid electrolytes. Our findings reveal that the ion transport mechanism of Ti3C2Tx remains consistent in both H2SO4 and H3PO4 electrolytes. The mode of charge transfer depends on its terminal groups. Specifically, the hydrogen bonding network formed by water molecules adsorbed by hydroxyl functional groups under van der Waals forces enables charge transfer in the form of naked H+ through the Grotthuss mechanism. In contrast, the hydrophobic channel formed by oxygen and halogen terminal groups facilitates rapid charge transfers in the form of hydronium ion via the vehicle mechanism, owing to negligible interfacial effect. Herein, we propose an aqueous proton battery based on porous hydroxy-poor Ti3C2Tx MXene anode and pre-protonated CuII[FeIII(CN)6]2/3∙4H2O (H-TBA) cathode in a 9.5 M H3PO4 solution. This proton battery operates through hydrated H+/H+ transfer, leading to good electrochemical performance, as evidenced by 26 Wh kg−1 energy density and 162 kW kg−1 power density at room temperature and an energy density of 17 Wh kg−1 and a power density of 7.4 kW kg−1 even at −60 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Batteries
Batteries Energy-Energy Engineering and Power Technology
CiteScore
4.00
自引率
15.00%
发文量
217
审稿时长
7 weeks
期刊最新文献
Copper Wire Resistance Corrosion Test for Assessing Copper Compatibility of E-Thermal Fluids for Battery Electric Vehicles (BEVs) Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review A Physics–Guided Machine Learning Approach for Capacity Fading Mechanism Detection and Fading Rate Prediction Using Early Cycle Data A Deep Learning Approach for Online State of Health Estimation of Lithium-Ion Batteries Using Partial Constant Current Charging Curves Low-Temperature-Tolerant Aqueous Proton Battery with Porous Ti3C2Tx MXene Electrode and Phosphoric Acid Electrolyte
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1