{"title":"太阳能电池数学建模:基于特殊反函数理论的新方法","authors":"Martin Ćalasan","doi":"10.1007/s10825-024-02190-5","DOIUrl":null,"url":null,"abstract":"<div><p>In a mathematical sense, regardless of the equivalent circuit, solar cells are represented by nonlinear dependencies of current and voltage. First, this paper discusses novel mathematical formulations of the current–voltage dependencies of solar cells for single-diode, double-diode, and triple-diode models (SDM, DDM, and TDM, respectively). Second, for SDM, although the analytical solution expressed through Special Trans Function Theory (STFT) was known in the literature, in this paper, its applicability was checked for the first time, and a comparison was made with a literature approach. Third, for both DDM and TDM, novel original iterative procedures for current–voltage dependencies based on the application of the STFT have been proposed. Fourth, the accuracy and efficiency of all the proposed solutions were confirmed by observing two different, well-known solar cells. Furthermore, the applicability of the proposed solutions was confirmed by experimentally measuring the current‒voltage characteristics of solar cells under different climatic conditions. The proposed modeling approaches undoubtedly represent a new field for the application of STFTs.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"23 6","pages":"1137 - 1147"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of solar cells: novel approaches based on Special Trans Function Theory\",\"authors\":\"Martin Ćalasan\",\"doi\":\"10.1007/s10825-024-02190-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a mathematical sense, regardless of the equivalent circuit, solar cells are represented by nonlinear dependencies of current and voltage. First, this paper discusses novel mathematical formulations of the current–voltage dependencies of solar cells for single-diode, double-diode, and triple-diode models (SDM, DDM, and TDM, respectively). Second, for SDM, although the analytical solution expressed through Special Trans Function Theory (STFT) was known in the literature, in this paper, its applicability was checked for the first time, and a comparison was made with a literature approach. Third, for both DDM and TDM, novel original iterative procedures for current–voltage dependencies based on the application of the STFT have been proposed. Fourth, the accuracy and efficiency of all the proposed solutions were confirmed by observing two different, well-known solar cells. Furthermore, the applicability of the proposed solutions was confirmed by experimentally measuring the current‒voltage characteristics of solar cells under different climatic conditions. The proposed modeling approaches undoubtedly represent a new field for the application of STFTs.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"23 6\",\"pages\":\"1137 - 1147\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-024-02190-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02190-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Mathematical modeling of solar cells: novel approaches based on Special Trans Function Theory
In a mathematical sense, regardless of the equivalent circuit, solar cells are represented by nonlinear dependencies of current and voltage. First, this paper discusses novel mathematical formulations of the current–voltage dependencies of solar cells for single-diode, double-diode, and triple-diode models (SDM, DDM, and TDM, respectively). Second, for SDM, although the analytical solution expressed through Special Trans Function Theory (STFT) was known in the literature, in this paper, its applicability was checked for the first time, and a comparison was made with a literature approach. Third, for both DDM and TDM, novel original iterative procedures for current–voltage dependencies based on the application of the STFT have been proposed. Fourth, the accuracy and efficiency of all the proposed solutions were confirmed by observing two different, well-known solar cells. Furthermore, the applicability of the proposed solutions was confirmed by experimentally measuring the current‒voltage characteristics of solar cells under different climatic conditions. The proposed modeling approaches undoubtedly represent a new field for the application of STFTs.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.