Minhaz Ul Alam, Md. Kamrul Islam Shifat, Jibon Krishna Modak, Md. Tarekuzzaman, Md. Ismail Haque, Md. Rasheduzzaman, Md Abdul Qader, Riazul Islam, Yasir Arafat, Md. Zahid Hasan
{"title":"Improving the efficiency and performance of Rb2SnI6-based perovskite solar cells through comprehensive optimization: a numerical study","authors":"Minhaz Ul Alam, Md. Kamrul Islam Shifat, Jibon Krishna Modak, Md. Tarekuzzaman, Md. Ismail Haque, Md. Rasheduzzaman, Md Abdul Qader, Riazul Islam, Yasir Arafat, Md. Zahid Hasan","doi":"10.1007/s10825-024-02276-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we explored the optimal performance of perovskite solar cells (PSCs) using the tin-halide material Rb<sub>2</sub>SnI<sub>6</sub>. This study focuses exclusively on the electrical properties of the devices, as simulated using SCAPS-1D software (solar capacitance simulator). The SCAPS-1D was employed to improve the device in the Rb<sub>2</sub>SnI<sub>6</sub>-based PSC, which utilized tungsten disulfide (WS<sub>2</sub>) as the electron transport layer and cadmium telluride (CdTe) as the hole transport layer (HTL). To identify the most suitable electron transport layer (ETL), we initially investigated WS<sub>2</sub>, SnS<sub>2</sub>, PCBM, and C<sub>60</sub>. The ITO/WS<sub>2</sub>/ Rb<sub>2</sub>SnI<sub>6</sub>/CdTe/Ni structure proved to be the most effective ETL after extensive investigation, demonstrating a power conversion efficiency (PCE) of 24.95%, a Voc of 1.0896 V, a Jsc of 44.6795 mA cm<sup>2</sup>, and an FF of 82.71%. Subsequently, we evaluated the impact of the absorber thickness, ETL thickness, and defect density on the device’s effectiveness in the Rb<sub>2</sub>SnI<sub>6</sub>, WS<sub>2</sub>, and CdTe layers. We further investigated the effect of adjusting the interfacial defect densities at the CdTe/Rb<sub>2</sub>SnI<sub>6</sub> and Rb<sub>2</sub>SnI<sub>6</sub>/WS<sub>2</sub> interfaces to optimize the device’s capabilities further. Additionally, we examined the proposed PSC’s quantum efficiency (QE), current density–voltage (J-V), shunt resistance, series resistance, capacitance–voltage, working temperature, and generation-recombination parameters. The results of these simulations provide valuable information for the excellent scientific fabrication of an inorganic PSC that is based on Rb<sub>2</sub>SnI<sub>6</sub>.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02276-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we explored the optimal performance of perovskite solar cells (PSCs) using the tin-halide material Rb2SnI6. This study focuses exclusively on the electrical properties of the devices, as simulated using SCAPS-1D software (solar capacitance simulator). The SCAPS-1D was employed to improve the device in the Rb2SnI6-based PSC, which utilized tungsten disulfide (WS2) as the electron transport layer and cadmium telluride (CdTe) as the hole transport layer (HTL). To identify the most suitable electron transport layer (ETL), we initially investigated WS2, SnS2, PCBM, and C60. The ITO/WS2/ Rb2SnI6/CdTe/Ni structure proved to be the most effective ETL after extensive investigation, demonstrating a power conversion efficiency (PCE) of 24.95%, a Voc of 1.0896 V, a Jsc of 44.6795 mA cm2, and an FF of 82.71%. Subsequently, we evaluated the impact of the absorber thickness, ETL thickness, and defect density on the device’s effectiveness in the Rb2SnI6, WS2, and CdTe layers. We further investigated the effect of adjusting the interfacial defect densities at the CdTe/Rb2SnI6 and Rb2SnI6/WS2 interfaces to optimize the device’s capabilities further. Additionally, we examined the proposed PSC’s quantum efficiency (QE), current density–voltage (J-V), shunt resistance, series resistance, capacitance–voltage, working temperature, and generation-recombination parameters. The results of these simulations provide valuable information for the excellent scientific fabrication of an inorganic PSC that is based on Rb2SnI6.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.