{"title":"Heterojunction active layer MAPbI3/CsPbI3 design for high-performance perovskite solar cells: a computational analysis achieving 20.5% efficiency","authors":"Darko Abdalla Noori","doi":"10.1007/s10825-025-02283-9","DOIUrl":null,"url":null,"abstract":"<div><p>This simulation study employed three distinct perovskite solar cell (PSC) structures: double electron transport layer (DETL) composed of (10–50 nm) TiO<sub>2</sub>/ (50 nm) ZnO, double hole transport layer (DHTL) incorporated of (20–100 nm) MoO<sub><i>x</i></sub>/ (200 nm) Spiro-OMeTAD, and double active layer (DAL) consisted of (300 nm) MAPbI<sub>3</sub>/ (50–150 nm) CsPbI<sub>3</sub> based PSCs separately. These configurations aimed to increase the charge carrier population and enhance fast electron and hole injection toward the electrodes in PSCs-based MAPbI<sub>3</sub>. Then, a morphological simulation study was conducted to evaluate the spatial distribution of the electron charge carrier density within the ETL, HTL, and perovskite materials. Additionally, the investigation delved into charge carrier density, charge carrier generation, and recombination within the thin-film materials, and compared the performance of single and doubling layers in PSCs. Notably, the simulation results demonstrated a remarkable power conversion efficiency (PCE) of 20.52% for the heterojunction active layer structure, surpassing the PCE of 19.8% and 18.5% were achieved for the DHTL and DETL configuration, respectively. Moreover, the PCE of the cell enhanced by 29% with the DAL (300-nm MAPbI<sub>3</sub>/150-nm CsPbI<sub>3</sub>) structure compared to the reference cell. This study provides meaningful information for advancing the realm of high-efficiency planar PSCs founded on double absorber layer structure.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02283-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This simulation study employed three distinct perovskite solar cell (PSC) structures: double electron transport layer (DETL) composed of (10–50 nm) TiO2/ (50 nm) ZnO, double hole transport layer (DHTL) incorporated of (20–100 nm) MoOx/ (200 nm) Spiro-OMeTAD, and double active layer (DAL) consisted of (300 nm) MAPbI3/ (50–150 nm) CsPbI3 based PSCs separately. These configurations aimed to increase the charge carrier population and enhance fast electron and hole injection toward the electrodes in PSCs-based MAPbI3. Then, a morphological simulation study was conducted to evaluate the spatial distribution of the electron charge carrier density within the ETL, HTL, and perovskite materials. Additionally, the investigation delved into charge carrier density, charge carrier generation, and recombination within the thin-film materials, and compared the performance of single and doubling layers in PSCs. Notably, the simulation results demonstrated a remarkable power conversion efficiency (PCE) of 20.52% for the heterojunction active layer structure, surpassing the PCE of 19.8% and 18.5% were achieved for the DHTL and DETL configuration, respectively. Moreover, the PCE of the cell enhanced by 29% with the DAL (300-nm MAPbI3/150-nm CsPbI3) structure compared to the reference cell. This study provides meaningful information for advancing the realm of high-efficiency planar PSCs founded on double absorber layer structure.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.