{"title":"基于孔径分布数据推导多模态非饱和土壤保水行为的新框架","authors":"Wei Yan, Roberto Cudmani","doi":"10.1007/s11440-024-02355-3","DOIUrl":null,"url":null,"abstract":"<div><p>The soil water retention curve (SWRC) strongly influences the hydro-mechanical properties of unsaturated soils. It plays a decisive role in geotechnical and geo-environmental applications in the vadose zone. This paper advances a novel framework to derive the water retention behavior of multimodal deformable soils based on the pore size distribution (PSD) measurements. The multiple effects of suction on the soil pore structure and total volume during SWRC tests are considered. The complete picture of soil microstructure is quantitatively described by the void ratio (for the pore volume) and a newly defined microstructural state parameter (for pore size distribution) from a probabilistic multimodal PSD model. Assuming a reversible microstructure evolution, a unique PSD surface for wetting and drying links the SWRC and PSD curves in the pore radius-suction-probability space. A closed-form water retention expression is obtained, facilitating the model's implementation in particle applications. The model is validated using the water retention data of four different soil types, showing a strong consistency between the measurement and the reproduced curve. The proposed method provides new insights into the pore structure evolution, the water retention behavior and the relationship between them for multimodal deformable soils.</p></div>","PeriodicalId":49308,"journal":{"name":"Acta Geotechnica","volume":"19 12","pages":"8071 - 8088"},"PeriodicalIF":5.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11440-024-02355-3.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel framework for deriving water retention behavior of multimodal unsaturated soils based on pore size distribution data\",\"authors\":\"Wei Yan, Roberto Cudmani\",\"doi\":\"10.1007/s11440-024-02355-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The soil water retention curve (SWRC) strongly influences the hydro-mechanical properties of unsaturated soils. It plays a decisive role in geotechnical and geo-environmental applications in the vadose zone. This paper advances a novel framework to derive the water retention behavior of multimodal deformable soils based on the pore size distribution (PSD) measurements. The multiple effects of suction on the soil pore structure and total volume during SWRC tests are considered. The complete picture of soil microstructure is quantitatively described by the void ratio (for the pore volume) and a newly defined microstructural state parameter (for pore size distribution) from a probabilistic multimodal PSD model. Assuming a reversible microstructure evolution, a unique PSD surface for wetting and drying links the SWRC and PSD curves in the pore radius-suction-probability space. A closed-form water retention expression is obtained, facilitating the model's implementation in particle applications. The model is validated using the water retention data of four different soil types, showing a strong consistency between the measurement and the reproduced curve. The proposed method provides new insights into the pore structure evolution, the water retention behavior and the relationship between them for multimodal deformable soils.</p></div>\",\"PeriodicalId\":49308,\"journal\":{\"name\":\"Acta Geotechnica\",\"volume\":\"19 12\",\"pages\":\"8071 - 8088\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11440-024-02355-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11440-024-02355-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11440-024-02355-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A novel framework for deriving water retention behavior of multimodal unsaturated soils based on pore size distribution data
The soil water retention curve (SWRC) strongly influences the hydro-mechanical properties of unsaturated soils. It plays a decisive role in geotechnical and geo-environmental applications in the vadose zone. This paper advances a novel framework to derive the water retention behavior of multimodal deformable soils based on the pore size distribution (PSD) measurements. The multiple effects of suction on the soil pore structure and total volume during SWRC tests are considered. The complete picture of soil microstructure is quantitatively described by the void ratio (for the pore volume) and a newly defined microstructural state parameter (for pore size distribution) from a probabilistic multimodal PSD model. Assuming a reversible microstructure evolution, a unique PSD surface for wetting and drying links the SWRC and PSD curves in the pore radius-suction-probability space. A closed-form water retention expression is obtained, facilitating the model's implementation in particle applications. The model is validated using the water retention data of four different soil types, showing a strong consistency between the measurement and the reproduced curve. The proposed method provides new insights into the pore structure evolution, the water retention behavior and the relationship between them for multimodal deformable soils.
期刊介绍:
Acta Geotechnica is an international journal devoted to the publication and dissemination of basic and applied research in geoengineering – an interdisciplinary field dealing with geomaterials such as soils and rocks. Coverage emphasizes the interplay between geomechanical models and their engineering applications. The journal presents original research papers on fundamental concepts in geomechanics and their novel applications in geoengineering based on experimental, analytical and/or numerical approaches. The main purpose of the journal is to foster understanding of the fundamental mechanisms behind the phenomena and processes in geomaterials, from kilometer-scale problems as they occur in geoscience, and down to the nano-scale, with their potential impact on geoengineering. The journal strives to report and archive progress in the field in a timely manner, presenting research papers, review articles, short notes and letters to the editors.