从运动看多时结构:应对多变山地环境中空中块体的灵活工具

N. Genzano, D. Fugazza, R. Eskandari, M. Scaioni
{"title":"从运动看多时结构:应对多变山地环境中空中块体的灵活工具","authors":"N. Genzano, D. Fugazza, R. Eskandari, M. Scaioni","doi":"10.5194/isprs-archives-xlviii-2-2024-99-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The application of Structure-from-Motion (SfM) and Multi-View-Stereo matching with aerial images can be successfully used for deriving dense point clouds to analyse changes in the mountain environment, which is characterized by changes due to the action of natural process. The comparison of multiple datasets requires to setup a stable reference system, task that is generally implemented by means of ground control points (GCPs). On the other hand, their positioning may be sometimes difficult in mountains. To cope with this drawback an approach termed as Multitemporal SfM (MSfM) is presented: multiple blocks are oriented together within a unique SfM project, where GCPs are used in only one epoch for establishing the absolute datum. Accurate coregistration between different epochs depends on the automatic extraction of tie points in stable areas. To verify the application of MSfM in real cases, this paper presents three case studies where different types of photogrammetric data are adopted, including images from drones and manned aircrafts. Applications to glacier and mountain river erosion are entailed.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"8 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multitemporal Structure-from-Motion: A Flexible Tool to Cope with Aerial Blocks in Changing Mountain Environment\",\"authors\":\"N. Genzano, D. Fugazza, R. Eskandari, M. Scaioni\",\"doi\":\"10.5194/isprs-archives-xlviii-2-2024-99-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The application of Structure-from-Motion (SfM) and Multi-View-Stereo matching with aerial images can be successfully used for deriving dense point clouds to analyse changes in the mountain environment, which is characterized by changes due to the action of natural process. The comparison of multiple datasets requires to setup a stable reference system, task that is generally implemented by means of ground control points (GCPs). On the other hand, their positioning may be sometimes difficult in mountains. To cope with this drawback an approach termed as Multitemporal SfM (MSfM) is presented: multiple blocks are oriented together within a unique SfM project, where GCPs are used in only one epoch for establishing the absolute datum. Accurate coregistration between different epochs depends on the automatic extraction of tie points in stable areas. To verify the application of MSfM in real cases, this paper presents three case studies where different types of photogrammetric data are adopted, including images from drones and manned aircrafts. Applications to glacier and mountain river erosion are entailed.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"8 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-99-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-99-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要应用 "运动结构"(SfM)和 "多视图-立体声 "与航空图像匹配,可成功生成密集的点云,用于分析山区环境的变化。对多个数据集进行比较需要建立一个稳定的参考系统,而这一任务通常通过地面控制点(GCP)来实现。但在山区,地面控制点的定位有时比较困难。为了解决这个问题,我们提出了一种被称为多时 SfM(MSfM)的方法:在一个独特的 SfM 项目中,多个区块被定向在一起,其中地面控制点只用于建立绝对基准的一个年代。不同历元之间的精确对中取决于在稳定区域自动提取连接点。为了验证 MSfM 在实际案例中的应用,本文介绍了三个案例研究,其中采用了不同类型的摄影测量数据,包括来自无人机和有人驾驶飞机的图像。其中包括冰川和山川侵蚀方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multitemporal Structure-from-Motion: A Flexible Tool to Cope with Aerial Blocks in Changing Mountain Environment
Abstract. The application of Structure-from-Motion (SfM) and Multi-View-Stereo matching with aerial images can be successfully used for deriving dense point clouds to analyse changes in the mountain environment, which is characterized by changes due to the action of natural process. The comparison of multiple datasets requires to setup a stable reference system, task that is generally implemented by means of ground control points (GCPs). On the other hand, their positioning may be sometimes difficult in mountains. To cope with this drawback an approach termed as Multitemporal SfM (MSfM) is presented: multiple blocks are oriented together within a unique SfM project, where GCPs are used in only one epoch for establishing the absolute datum. Accurate coregistration between different epochs depends on the automatic extraction of tie points in stable areas. To verify the application of MSfM in real cases, this paper presents three case studies where different types of photogrammetric data are adopted, including images from drones and manned aircrafts. Applications to glacier and mountain river erosion are entailed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Archives Monitoring Time-Varying Changes of Historic Structures Through Photogrammetry-Driven Digital Twinning Multimedia Photogrammetry for Automated 3D Monitoring in Archaeological Waterlogged Wood Conservation Efficient Calculation of Multi-Scale Features for MMS Point Clouds Concepts for compensation of wave effects when measuring through water surfaces in photogrammetric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1