用于单片串联光电化学水分离装置的富集地球的金属氧化物:当前趋势与前景

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-06-11 DOI:10.1021/acsmaterialslett.4c00636
Choongman Moon, Gihun Jung, Jihong Min and Byungha Shin*, 
{"title":"用于单片串联光电化学水分离装置的富集地球的金属氧化物:当前趋势与前景","authors":"Choongman Moon,&nbsp;Gihun Jung,&nbsp;Jihong Min and Byungha Shin*,&nbsp;","doi":"10.1021/acsmaterialslett.4c00636","DOIUrl":null,"url":null,"abstract":"<p >Rather than supplying electrical power from a photovoltaic cell to a separate water electrolyzer, photoelectrochemical (PEC) water-splitting studies attempt to integrate key components into a single device for solar-driven hydrogen production. Despite the compact device architecture enhancing the cost-efficiency of solar-driven hydrogen production, the realization of PEC technology remains challenging. In this review, we focus on the physical properties of earth-abundant metal oxides and the choice of device architecture as key considerations for constructing a PEC device for practical hydrogen production. We introduce previous studies on BiVO<sub>4</sub> to elaborate on various methods for facilitating the transport of charge carriers through metal oxides and their interface with an electrolyte. Furthermore, we discuss how the choice of PEC device structures affects the electrical and ionic charge transport and the usage of precious elements. Based on this discussion, we highlight a wireless monolithic tandem PEC device made up of earth-abundant elements and expatiate on practical aspects regarding the preparation and operation of such PEC devices.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Earth-Abundant Metal Oxides for Monolithic Tandem Photoelectrochemical Water Splitting Devices: Current Trends and Perspectives\",\"authors\":\"Choongman Moon,&nbsp;Gihun Jung,&nbsp;Jihong Min and Byungha Shin*,&nbsp;\",\"doi\":\"10.1021/acsmaterialslett.4c00636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rather than supplying electrical power from a photovoltaic cell to a separate water electrolyzer, photoelectrochemical (PEC) water-splitting studies attempt to integrate key components into a single device for solar-driven hydrogen production. Despite the compact device architecture enhancing the cost-efficiency of solar-driven hydrogen production, the realization of PEC technology remains challenging. In this review, we focus on the physical properties of earth-abundant metal oxides and the choice of device architecture as key considerations for constructing a PEC device for practical hydrogen production. We introduce previous studies on BiVO<sub>4</sub> to elaborate on various methods for facilitating the transport of charge carriers through metal oxides and their interface with an electrolyte. Furthermore, we discuss how the choice of PEC device structures affects the electrical and ionic charge transport and the usage of precious elements. Based on this discussion, we highlight a wireless monolithic tandem PEC device made up of earth-abundant elements and expatiate on practical aspects regarding the preparation and operation of such PEC devices.</p>\",\"PeriodicalId\":19,\"journal\":{\"name\":\"ACS Materials Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Materials Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c00636\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c00636","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光电化学(PEC)水分离研究试图将太阳能驱动制氢的关键部件集成到单个设备中,而不是将光伏电池的电能提供给单独的水电解槽。尽管紧凑的设备结构提高了太阳能驱动制氢的成本效益,但实现 PEC 技术仍然充满挑战。在本综述中,我们将重点关注富土金属氧化物的物理性质和设备结构的选择,这是构建实用制氢 PEC 设备的关键因素。我们介绍了以前对 BiVO4 的研究,详细阐述了促进电荷载体通过金属氧化物及其与电解质界面传输的各种方法。此外,我们还讨论了 PEC 器件结构的选择如何影响电荷和离子电荷传输以及贵重元素的使用。在此讨论的基础上,我们重点介绍了一种由丰富的地球元素组成的无线单片串联 PEC 器件,并阐述了有关制备和运行此类 PEC 器件的实际问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Earth-Abundant Metal Oxides for Monolithic Tandem Photoelectrochemical Water Splitting Devices: Current Trends and Perspectives

Rather than supplying electrical power from a photovoltaic cell to a separate water electrolyzer, photoelectrochemical (PEC) water-splitting studies attempt to integrate key components into a single device for solar-driven hydrogen production. Despite the compact device architecture enhancing the cost-efficiency of solar-driven hydrogen production, the realization of PEC technology remains challenging. In this review, we focus on the physical properties of earth-abundant metal oxides and the choice of device architecture as key considerations for constructing a PEC device for practical hydrogen production. We introduce previous studies on BiVO4 to elaborate on various methods for facilitating the transport of charge carriers through metal oxides and their interface with an electrolyte. Furthermore, we discuss how the choice of PEC device structures affects the electrical and ionic charge transport and the usage of precious elements. Based on this discussion, we highlight a wireless monolithic tandem PEC device made up of earth-abundant elements and expatiate on practical aspects regarding the preparation and operation of such PEC devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Restoration of Motor and Bladder Functions after Spinal Cord Injury via Sustained Wogonin Release from Carbon Nanotube Incorporated Hydrogels Alumina–Titania Nanolaminate Condensers for Hot Programmable Catalysis Wearable e-Bandage with Antimicrobial Ionogel as an Integrated Electroceutical Device for Accelerated Wound Healing Self-Irrigation and Slow-Release Fertilizer Hydrogels for Sustainable Agriculture Solar-Responsive Interface Self-Assembled MOF-Derived Foam for Adaptive Indoor Humidity Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1