遥感中视觉语言分割模型的实用技术

Yuting Lin, Kumiko Suzuki, Shinichiro Sogo
{"title":"遥感中视觉语言分割模型的实用技术","authors":"Yuting Lin, Kumiko Suzuki, Shinichiro Sogo","doi":"10.5194/isprs-archives-xlviii-2-2024-203-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Traditional semantic segmentation models often struggle with poor generalizability in zero-shot scenarios such as recognizing attributes unseen in the training labels. On the other hands, language-vision models (VLMs) have shown promise in improving performance on zero-shot tasks by leveraging semantic information from textual inputs and fusing this information with visual features. However, existing VLM-based methods do not perform as effectively on remote sensing data due to the lack of such data in their training datasets. In this paper, we introduce a two-stage fine-tuning approach for a VLM-based segmentation model using a large remote sensing image-caption dataset, which we created using an existing image-caption model. Additionally, we propose a modified decoder and a visual prompt technique using a saliency map to enhance segmentation results. Through these methods, we achieve superior segmentation performance on remote sensing data, demonstrating the effectiveness of our approach.\n","PeriodicalId":505918,"journal":{"name":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","volume":"73 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Practical Techniques for Vision-Language Segmentation Model in Remote Sensing\",\"authors\":\"Yuting Lin, Kumiko Suzuki, Shinichiro Sogo\",\"doi\":\"10.5194/isprs-archives-xlviii-2-2024-203-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Traditional semantic segmentation models often struggle with poor generalizability in zero-shot scenarios such as recognizing attributes unseen in the training labels. On the other hands, language-vision models (VLMs) have shown promise in improving performance on zero-shot tasks by leveraging semantic information from textual inputs and fusing this information with visual features. However, existing VLM-based methods do not perform as effectively on remote sensing data due to the lack of such data in their training datasets. In this paper, we introduce a two-stage fine-tuning approach for a VLM-based segmentation model using a large remote sensing image-caption dataset, which we created using an existing image-caption model. Additionally, we propose a modified decoder and a visual prompt technique using a saliency map to enhance segmentation results. Through these methods, we achieve superior segmentation performance on remote sensing data, demonstrating the effectiveness of our approach.\\n\",\"PeriodicalId\":505918,\"journal\":{\"name\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"volume\":\"73 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-203-2024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-2-2024-203-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要传统的语义分割模型在零镜头场景中往往难以实现较好的泛化,例如识别训练标签中未出现的属性。另一方面,语言视觉模型(VLM)通过利用文本输入中的语义信息并将这些信息与视觉特征融合,在提高零镜头任务的性能方面已显示出良好的前景。然而,现有的基于 VLM 的方法由于训练数据集中缺乏此类数据,因此在遥感数据上表现不佳。在本文中,我们利用一个大型遥感图像标题数据集,为基于 VLM 的分割模型引入了两阶段微调方法,该数据集是我们利用现有的图像标题模型创建的。此外,我们还提出了一种改进的解码器和一种使用显著性地图的视觉提示技术,以增强分割结果。通过这些方法,我们在遥感数据上实现了卓越的分割性能,证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical Techniques for Vision-Language Segmentation Model in Remote Sensing
Abstract. Traditional semantic segmentation models often struggle with poor generalizability in zero-shot scenarios such as recognizing attributes unseen in the training labels. On the other hands, language-vision models (VLMs) have shown promise in improving performance on zero-shot tasks by leveraging semantic information from textual inputs and fusing this information with visual features. However, existing VLM-based methods do not perform as effectively on remote sensing data due to the lack of such data in their training datasets. In this paper, we introduce a two-stage fine-tuning approach for a VLM-based segmentation model using a large remote sensing image-caption dataset, which we created using an existing image-caption model. Additionally, we propose a modified decoder and a visual prompt technique using a saliency map to enhance segmentation results. Through these methods, we achieve superior segmentation performance on remote sensing data, demonstrating the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The 19th 3D GeoInfo Conference: Preface Archives Monitoring Time-Varying Changes of Historic Structures Through Photogrammetry-Driven Digital Twinning Multimedia Photogrammetry for Automated 3D Monitoring in Archaeological Waterlogged Wood Conservation Efficient Calculation of Multi-Scale Features for MMS Point Clouds Concepts for compensation of wave effects when measuring through water surfaces in photogrammetric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1