Biyao Liu, Peilei Zhang, Hua Yan, Qinghua Lu, Haichuan Shi, Zhenyu Liu, Di Wu, Tianzhu Sun, Ruifeng Li, Qingzhao Wang
{"title":"选择性激光熔融法制造纯耐火金属综述","authors":"Biyao Liu, Peilei Zhang, Hua Yan, Qinghua Lu, Haichuan Shi, Zhenyu Liu, Di Wu, Tianzhu Sun, Ruifeng Li, Qingzhao Wang","doi":"10.1007/s11665-024-09693-z","DOIUrl":null,"url":null,"abstract":"<div><p>Refractory metals have increasingly attracted the attention of researchers due to their excellent high-temperature strength, thermal conductivity, radiation resistance, and biocompatibility for applications in extreme environments such as aerospace and nuclear industries. However, beyond traditional manufacturing processes, the complex post-treatment process, high cost, and difficulty in manufacturing complex geometry components limit its further application in modern industry. Compared to conventional manufacturing processes, selective laser melting (SLM) technology, an emerging technology, can significantly simplify the production process and has the advantage of manufacturing parts with complex geometry. Therefore, there is increasing research on manufacturing refractory metals using SLM technology. This article describes the current research progress of pure refractory metals manufactured by SLM regarding the preparation process, microstructure, metallurgical defects, and mechanical properties of refractory metals (tungsten, molybdenum, niobium, tantalum, etc.). Generally speaking, there are some technical difficulties in the fabrication of refractory alloys by SLM, summarized in this paper. Finally, the article presented the prospect of developing SLM refractory metals.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 19","pages":"9945 - 9975"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Manufacturing Pure Refractory Metals by Selective Laser Melting\",\"authors\":\"Biyao Liu, Peilei Zhang, Hua Yan, Qinghua Lu, Haichuan Shi, Zhenyu Liu, Di Wu, Tianzhu Sun, Ruifeng Li, Qingzhao Wang\",\"doi\":\"10.1007/s11665-024-09693-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Refractory metals have increasingly attracted the attention of researchers due to their excellent high-temperature strength, thermal conductivity, radiation resistance, and biocompatibility for applications in extreme environments such as aerospace and nuclear industries. However, beyond traditional manufacturing processes, the complex post-treatment process, high cost, and difficulty in manufacturing complex geometry components limit its further application in modern industry. Compared to conventional manufacturing processes, selective laser melting (SLM) technology, an emerging technology, can significantly simplify the production process and has the advantage of manufacturing parts with complex geometry. Therefore, there is increasing research on manufacturing refractory metals using SLM technology. This article describes the current research progress of pure refractory metals manufactured by SLM regarding the preparation process, microstructure, metallurgical defects, and mechanical properties of refractory metals (tungsten, molybdenum, niobium, tantalum, etc.). Generally speaking, there are some technical difficulties in the fabrication of refractory alloys by SLM, summarized in this paper. Finally, the article presented the prospect of developing SLM refractory metals.</p></div>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"33 19\",\"pages\":\"9945 - 9975\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11665-024-09693-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-024-09693-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A Review on Manufacturing Pure Refractory Metals by Selective Laser Melting
Refractory metals have increasingly attracted the attention of researchers due to their excellent high-temperature strength, thermal conductivity, radiation resistance, and biocompatibility for applications in extreme environments such as aerospace and nuclear industries. However, beyond traditional manufacturing processes, the complex post-treatment process, high cost, and difficulty in manufacturing complex geometry components limit its further application in modern industry. Compared to conventional manufacturing processes, selective laser melting (SLM) technology, an emerging technology, can significantly simplify the production process and has the advantage of manufacturing parts with complex geometry. Therefore, there is increasing research on manufacturing refractory metals using SLM technology. This article describes the current research progress of pure refractory metals manufactured by SLM regarding the preparation process, microstructure, metallurgical defects, and mechanical properties of refractory metals (tungsten, molybdenum, niobium, tantalum, etc.). Generally speaking, there are some technical difficulties in the fabrication of refractory alloys by SLM, summarized in this paper. Finally, the article presented the prospect of developing SLM refractory metals.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered