{"title":"与非线性电动力学耦合的一般旋转规则黑洞的测试粒子运动和拓扑解释","authors":"Abdelhay Salah Mohamed , Euaggelos E. Zotos","doi":"10.1016/j.ascom.2024.100853","DOIUrl":null,"url":null,"abstract":"<div><p>This research is devoted to investigate the dynamics of test particles and the intricate topological nature of generic rotating Regular Black Holes (RBHs). By applying the Hamilton–Jacobi formalism, we have presented the paths of test particles as they move around the RBHs, graphically. The dynamics of angular momentum and energy of particles in both counter-rotation and co-rotation are studied. As these particles move around RBH, we observe the interplay of forces shaping their journey. We observe how the effective force, effective potential, and Lyapunov exponent change over time. The Lyapunov exponent, a measure of chaos in their motion, evolves, hinting at the stability of their orbits. Moreover, we study the topological properties of a generic rotating RBH and determine their topological numbers, which are sums of winding numbers around defects and probe the fabric of spacetime itself. The winding number is an integer that indicates how many times a curve encircling a defect wraps around the origin. We find that the total topological number is equal to 0 which suggest a system in balance. As the value of degree of nonlinear electrodynamics parameter (<span><math><mi>μ</mi></math></span>) increases, the turning points in particle trajectories multiply and presenting the picture of more complexity. In a twist of topology, the interchange of winding numbers can cause a phase transition, reshaping the order parameter space’s topology.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"48 ","pages":"Article 100853"},"PeriodicalIF":1.9000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion of test particles and topological interpretation of generic rotating regular black holes coupled to non-linear electrodynamics\",\"authors\":\"Abdelhay Salah Mohamed , Euaggelos E. Zotos\",\"doi\":\"10.1016/j.ascom.2024.100853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research is devoted to investigate the dynamics of test particles and the intricate topological nature of generic rotating Regular Black Holes (RBHs). By applying the Hamilton–Jacobi formalism, we have presented the paths of test particles as they move around the RBHs, graphically. The dynamics of angular momentum and energy of particles in both counter-rotation and co-rotation are studied. As these particles move around RBH, we observe the interplay of forces shaping their journey. We observe how the effective force, effective potential, and Lyapunov exponent change over time. The Lyapunov exponent, a measure of chaos in their motion, evolves, hinting at the stability of their orbits. Moreover, we study the topological properties of a generic rotating RBH and determine their topological numbers, which are sums of winding numbers around defects and probe the fabric of spacetime itself. The winding number is an integer that indicates how many times a curve encircling a defect wraps around the origin. We find that the total topological number is equal to 0 which suggest a system in balance. As the value of degree of nonlinear electrodynamics parameter (<span><math><mi>μ</mi></math></span>) increases, the turning points in particle trajectories multiply and presenting the picture of more complexity. In a twist of topology, the interchange of winding numbers can cause a phase transition, reshaping the order parameter space’s topology.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"48 \",\"pages\":\"Article 100853\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133724000684\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133724000684","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Motion of test particles and topological interpretation of generic rotating regular black holes coupled to non-linear electrodynamics
This research is devoted to investigate the dynamics of test particles and the intricate topological nature of generic rotating Regular Black Holes (RBHs). By applying the Hamilton–Jacobi formalism, we have presented the paths of test particles as they move around the RBHs, graphically. The dynamics of angular momentum and energy of particles in both counter-rotation and co-rotation are studied. As these particles move around RBH, we observe the interplay of forces shaping their journey. We observe how the effective force, effective potential, and Lyapunov exponent change over time. The Lyapunov exponent, a measure of chaos in their motion, evolves, hinting at the stability of their orbits. Moreover, we study the topological properties of a generic rotating RBH and determine their topological numbers, which are sums of winding numbers around defects and probe the fabric of spacetime itself. The winding number is an integer that indicates how many times a curve encircling a defect wraps around the origin. We find that the total topological number is equal to 0 which suggest a system in balance. As the value of degree of nonlinear electrodynamics parameter () increases, the turning points in particle trajectories multiply and presenting the picture of more complexity. In a twist of topology, the interchange of winding numbers can cause a phase transition, reshaping the order parameter space’s topology.
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.