Xue-Qing Xu, Ming Fang, Yong-Hong Zhou, Xin-Hao Liao
{"title":"2012 年至 2022 年大陆和海洋 AAM 对钱德勒晃动的贡献以及振幅衰减","authors":"Xue-Qing Xu, Ming Fang, Yong-Hong Zhou, Xin-Hao Liao","doi":"10.1007/s00190-024-01872-z","DOIUrl":null,"url":null,"abstract":"<p>We reconstructed the Chandler Wobble (CW) from 1962 to 2022 by combining the Eigen-oscillator excited by geophysical fluids of atmospheric and oceanic angular momentums (AAM and OAM). The mass and motion terms for the AAM are further divided with respect to the land and ocean domains. Particular attention is placed on the time span from 2012 to 2022 in relation to the observable reduction in the amplitude of the CW. Our research indicates that the main contributor to the CW induced by AAM is the mass term (i.e., the pressure variations over land). Moreover, the phase of the AAM-induced CW remains relatively stable during the interval of 1962–2022. In contrast, the phase of the OAM-induced CW exhibits a periodic variation with a cycle of approximately 20 years. This cyclic variation would modulate the overall amplitude of the CW. The noticeable amplitude deduction over the past ten years can be attributed to the evolution of the CW driven by AAM and OAM, toward a state of cancellation. These findings further reveal that the variation in the phase difference between the CW forced by AAM and OAM, may be indicative of changes in the interaction between the solid Earth, atmosphere, and ocean.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"15 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continental and oceanic AAM contributions to Chandler Wobble with the amplitude attenuation from 2012 to 2022\",\"authors\":\"Xue-Qing Xu, Ming Fang, Yong-Hong Zhou, Xin-Hao Liao\",\"doi\":\"10.1007/s00190-024-01872-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We reconstructed the Chandler Wobble (CW) from 1962 to 2022 by combining the Eigen-oscillator excited by geophysical fluids of atmospheric and oceanic angular momentums (AAM and OAM). The mass and motion terms for the AAM are further divided with respect to the land and ocean domains. Particular attention is placed on the time span from 2012 to 2022 in relation to the observable reduction in the amplitude of the CW. Our research indicates that the main contributor to the CW induced by AAM is the mass term (i.e., the pressure variations over land). Moreover, the phase of the AAM-induced CW remains relatively stable during the interval of 1962–2022. In contrast, the phase of the OAM-induced CW exhibits a periodic variation with a cycle of approximately 20 years. This cyclic variation would modulate the overall amplitude of the CW. The noticeable amplitude deduction over the past ten years can be attributed to the evolution of the CW driven by AAM and OAM, toward a state of cancellation. These findings further reveal that the variation in the phase difference between the CW forced by AAM and OAM, may be indicative of changes in the interaction between the solid Earth, atmosphere, and ocean.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01872-z\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01872-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Continental and oceanic AAM contributions to Chandler Wobble with the amplitude attenuation from 2012 to 2022
We reconstructed the Chandler Wobble (CW) from 1962 to 2022 by combining the Eigen-oscillator excited by geophysical fluids of atmospheric and oceanic angular momentums (AAM and OAM). The mass and motion terms for the AAM are further divided with respect to the land and ocean domains. Particular attention is placed on the time span from 2012 to 2022 in relation to the observable reduction in the amplitude of the CW. Our research indicates that the main contributor to the CW induced by AAM is the mass term (i.e., the pressure variations over land). Moreover, the phase of the AAM-induced CW remains relatively stable during the interval of 1962–2022. In contrast, the phase of the OAM-induced CW exhibits a periodic variation with a cycle of approximately 20 years. This cyclic variation would modulate the overall amplitude of the CW. The noticeable amplitude deduction over the past ten years can be attributed to the evolution of the CW driven by AAM and OAM, toward a state of cancellation. These findings further reveal that the variation in the phase difference between the CW forced by AAM and OAM, may be indicative of changes in the interaction between the solid Earth, atmosphere, and ocean.
期刊介绍:
The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as:
-Positioning
-Reference frame
-Geodetic networks
-Modeling and quality control
-Space geodesy
-Remote sensing
-Gravity fields
-Geodynamics