利用大肠杆菌的葡萄糖代谢,通过体内 ATP 再生系统提高 L-天冬酰胺的产量。

IF 3.1 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Applied Biochemistry and Biotechnology Pub Date : 2024-06-20 DOI:10.1007/s12010-024-04982-8
Yucheng Fan, Zijia Wei, Yuhua Zhang, Xuguo Duan
{"title":"利用大肠杆菌的葡萄糖代谢,通过体内 ATP 再生系统提高 L-天冬酰胺的产量。","authors":"Yucheng Fan, Zijia Wei, Yuhua Zhang, Xuguo Duan","doi":"10.1007/s12010-024-04982-8","DOIUrl":null,"url":null,"abstract":"<p><p>L-asparaginase synthetase, an ATP-dependent enzyme, necessitates ATP for its catalytic activity. However, the integration of L-asparaginase synthetase into industrial processes is curtailed by the prohibitive cost of ATP. To address this limitation, this study explores the construction of an efficient ATP regeneration system using the glucose metabolism of Escherichia coli, synergistically coupled with L-asparaginase synthetase catalysis. The optimal conditions for L-asparagine yield were determined in shake flasks. A total of 2.7 g/L was the highest yield achieved under specific parameters, including 0.1 mol/L of substrate, 0.2 mol/L glucose, 0.01 mol/L MgCl<sub>2</sub> at pH 7.5, a temperature of 37 °C, and agitation at 300 r/min over 12 h. The process was then scaled to a 3-L fermenter, optimizing the addition rates of the substrate and magnesium chloride, and employing a constant glucose feed of 10 g/L/h. The scale-up process led to a significant enhancement in the production of L-asparagine. The yield of L-asparagine was increased to 38.49 g/L after 20 h of conversion, and the molar conversion rate reached 29.16%. This strategy has proven to be effective in improving the efficiency of L-asparagine production. When compared to in vitro ATP regeneration methods, this in vivo approach showcased superior efficiency and reduced costs. These findings furnish pivotal insights that may propel the enzymatic synthesis of L-asparagine toward viable industrial application.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing L-asparagine Production Through In Vivo ATP Regeneration System Utilizing Glucose Metabolism of Escherichia coli.\",\"authors\":\"Yucheng Fan, Zijia Wei, Yuhua Zhang, Xuguo Duan\",\"doi\":\"10.1007/s12010-024-04982-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>L-asparaginase synthetase, an ATP-dependent enzyme, necessitates ATP for its catalytic activity. However, the integration of L-asparaginase synthetase into industrial processes is curtailed by the prohibitive cost of ATP. To address this limitation, this study explores the construction of an efficient ATP regeneration system using the glucose metabolism of Escherichia coli, synergistically coupled with L-asparaginase synthetase catalysis. The optimal conditions for L-asparagine yield were determined in shake flasks. A total of 2.7 g/L was the highest yield achieved under specific parameters, including 0.1 mol/L of substrate, 0.2 mol/L glucose, 0.01 mol/L MgCl<sub>2</sub> at pH 7.5, a temperature of 37 °C, and agitation at 300 r/min over 12 h. The process was then scaled to a 3-L fermenter, optimizing the addition rates of the substrate and magnesium chloride, and employing a constant glucose feed of 10 g/L/h. The scale-up process led to a significant enhancement in the production of L-asparagine. The yield of L-asparagine was increased to 38.49 g/L after 20 h of conversion, and the molar conversion rate reached 29.16%. This strategy has proven to be effective in improving the efficiency of L-asparagine production. When compared to in vitro ATP regeneration methods, this in vivo approach showcased superior efficiency and reduced costs. These findings furnish pivotal insights that may propel the enzymatic synthesis of L-asparagine toward viable industrial application.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-04982-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-04982-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

L-天冬酰胺酶合成酶是一种依赖 ATP 的酶,其催化活性需要 ATP。然而,由于 ATP 的成本过高,L-天冬酰胺酶合成酶在工业生产过程中的应用受到限制。为解决这一局限性,本研究利用大肠杆菌的葡萄糖代谢与 L-天冬酰胺酶合成酶催化协同作用,探索构建高效的 ATP 再生系统。在摇瓶中确定了 L-天冬酰胺产量的最佳条件。在特定参数(包括 0.1 摩尔/升底物、0.2 摩尔/升葡萄糖、0.01 摩尔/升氯化镁,pH 值为 7.5,温度为 37 °C,搅拌速度为 300 r/min,持续 12 小时)下,L-天冬酰胺的最高产量为 2.7 克/升。放大工艺显著提高了 L-天冬酰胺的产量。经过 20 小时的转化,L-天冬酰胺的产量增加到 38.49 克/升,摩尔转化率达到 29.16%。事实证明,这种策略能有效提高 L-天冬酰胺的生产效率。与体外 ATP 再生方法相比,这种体内方法效率更高,成本更低。这些发现为酶法合成 L-天冬酰胺的工业应用提供了重要启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing L-asparagine Production Through In Vivo ATP Regeneration System Utilizing Glucose Metabolism of Escherichia coli.

L-asparaginase synthetase, an ATP-dependent enzyme, necessitates ATP for its catalytic activity. However, the integration of L-asparaginase synthetase into industrial processes is curtailed by the prohibitive cost of ATP. To address this limitation, this study explores the construction of an efficient ATP regeneration system using the glucose metabolism of Escherichia coli, synergistically coupled with L-asparaginase synthetase catalysis. The optimal conditions for L-asparagine yield were determined in shake flasks. A total of 2.7 g/L was the highest yield achieved under specific parameters, including 0.1 mol/L of substrate, 0.2 mol/L glucose, 0.01 mol/L MgCl2 at pH 7.5, a temperature of 37 °C, and agitation at 300 r/min over 12 h. The process was then scaled to a 3-L fermenter, optimizing the addition rates of the substrate and magnesium chloride, and employing a constant glucose feed of 10 g/L/h. The scale-up process led to a significant enhancement in the production of L-asparagine. The yield of L-asparagine was increased to 38.49 g/L after 20 h of conversion, and the molar conversion rate reached 29.16%. This strategy has proven to be effective in improving the efficiency of L-asparagine production. When compared to in vitro ATP regeneration methods, this in vivo approach showcased superior efficiency and reduced costs. These findings furnish pivotal insights that may propel the enzymatic synthesis of L-asparagine toward viable industrial application.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Biochemistry and Biotechnology
Applied Biochemistry and Biotechnology 工程技术-生化与分子生物学
CiteScore
5.70
自引率
6.70%
发文量
460
审稿时长
5.3 months
期刊介绍: This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities. In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.
期刊最新文献
Ursolic Acid Restores Redox Homeostasis and Pro-inflammatory Cytokine Production in Denervation-Induced Skeletal Muscle Atrophy. Effect of Adding Benzyl Alcohol on Hydrogen Production from Lignite. Effect of UV-C Irradiation on Growth, Photosynthetic Pigments, and Lipid Profile of Chlorella sorokiniana. Design of Bionanomaterial of Chitosan Carbohydrate Polymer Composited with Broccoli Extract and Zinc Oxide Nanoparticles: Anticancer Activity in Human Osteosarcoma. DKN-01 Suppresses Gastric Cancer Progression Through Activating cGAS-STING Pathway to Block Macrophage M2 Polarization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1