{"title":"用于原位结构生物学的低温聚焦离子束:技术现状、挑战和前景","authors":"Alex J. Noble, Alex de Marco","doi":"10.1016/j.sbi.2024.102864","DOIUrl":null,"url":null,"abstract":"<div><p>Cryogenic-focused ion beam (cryo-FIB) instruments became essential for high-resolution imaging in cryo-preserved cells and tissues. Cryo-FIBs use accelerated ions to thin samples that would otherwise be too thick for cryo-electron microscopy (cryo-EM). This allows visualizing cellular ultrastructures in near-native frozen hydrated states. This review describes the current state-of-the-art capabilities of cryo-FIB technology and its applications in structural cell and tissue biology. We discuss recent advances in instrumentation, imaging modalities, automation, sample preparation protocols, and targeting techniques. We outline remaining challenges and future directions to make cryo-FIB more precise, enable higher throughput, and be widely accessible. Further improvements in targeting, efficiency, robust sample preparation, emerging ion sources, automation, and downstream electron tomography have the potential to reveal intricate molecular architectures across length scales inside cells and tissues. Cryo-FIB is poised to become an indispensable tool for preparing native biological systems in situ for high-resolution 3D structural analysis.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"87 ","pages":"Article 102864"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24000915/pdfft?md5=facf3fbca25e633e212221fe7b841068&pid=1-s2.0-S0959440X24000915-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cryo-focused ion beam for in situ structural biology: State of the art, challenges, and perspectives\",\"authors\":\"Alex J. Noble, Alex de Marco\",\"doi\":\"10.1016/j.sbi.2024.102864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cryogenic-focused ion beam (cryo-FIB) instruments became essential for high-resolution imaging in cryo-preserved cells and tissues. Cryo-FIBs use accelerated ions to thin samples that would otherwise be too thick for cryo-electron microscopy (cryo-EM). This allows visualizing cellular ultrastructures in near-native frozen hydrated states. This review describes the current state-of-the-art capabilities of cryo-FIB technology and its applications in structural cell and tissue biology. We discuss recent advances in instrumentation, imaging modalities, automation, sample preparation protocols, and targeting techniques. We outline remaining challenges and future directions to make cryo-FIB more precise, enable higher throughput, and be widely accessible. Further improvements in targeting, efficiency, robust sample preparation, emerging ion sources, automation, and downstream electron tomography have the potential to reveal intricate molecular architectures across length scales inside cells and tissues. Cryo-FIB is poised to become an indispensable tool for preparing native biological systems in situ for high-resolution 3D structural analysis.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"87 \",\"pages\":\"Article 102864\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000915/pdfft?md5=facf3fbca25e633e212221fe7b841068&pid=1-s2.0-S0959440X24000915-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000915\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000915","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cryo-focused ion beam for in situ structural biology: State of the art, challenges, and perspectives
Cryogenic-focused ion beam (cryo-FIB) instruments became essential for high-resolution imaging in cryo-preserved cells and tissues. Cryo-FIBs use accelerated ions to thin samples that would otherwise be too thick for cryo-electron microscopy (cryo-EM). This allows visualizing cellular ultrastructures in near-native frozen hydrated states. This review describes the current state-of-the-art capabilities of cryo-FIB technology and its applications in structural cell and tissue biology. We discuss recent advances in instrumentation, imaging modalities, automation, sample preparation protocols, and targeting techniques. We outline remaining challenges and future directions to make cryo-FIB more precise, enable higher throughput, and be widely accessible. Further improvements in targeting, efficiency, robust sample preparation, emerging ion sources, automation, and downstream electron tomography have the potential to reveal intricate molecular architectures across length scales inside cells and tissues. Cryo-FIB is poised to become an indispensable tool for preparing native biological systems in situ for high-resolution 3D structural analysis.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation