Daniele Silvestro, Thibault Latrille, Nicolas Salamin
{"title":"系统发育估计的半监督学习方法。","authors":"Daniele Silvestro, Thibault Latrille, Nicolas Salamin","doi":"10.1093/sysbio/syae029","DOIUrl":null,"url":null,"abstract":"<p><p>Models have always been central to inferring molecular evolution and to reconstructing phylogenetic trees. Their use typically involves the development of a mechanistic framework reflecting our understanding of the underlying biological processes, such as nucleotide substitutions, and the estimation of model parameters by maximum likelihood or Bayesian inference. However, deriving and optimizing the likelihood of the data is not always possible under complex evolutionary scenarios or even tractable for large datasets, often leading to unrealistic simplifying assumptions in the fitted models. To overcome this issue, we coupled stochastic simulations of genome evolution with a new supervised deep-learning model to infer key parameters of molecular evolution. Our model is designed to directly analyze multiple sequence alignments and estimate per-site evolutionary rates and divergence without requiring a known phylogenetic tree. The accuracy of our predictions matched that of likelihood-based phylogenetic inference when rate heterogeneity followed a simple gamma distribution, but it strongly exceeded it under more complex patterns of rate variation, such as codon models. Our approach is highly scalable and can be efficiently applied to genomic data, as we showed on a dataset of 26 million nucleotides from the clownfish clade. Our simulations also showed that the integration of per-site rates obtained by deep learning within a Bayesian framework led to significantly more accurate phylogenetic inference, particularly with respect to the estimated branch lengths. We thus propose that future advancements in phylogenetic analysis will benefit from a semi-supervised learning approach that combines deep-learning estimation of substitution rates, which allows for more flexible models of rate variation, and probabilistic inference of the phylogenetic tree, which guarantees interpretability and a rigorous assessment of statistical support.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":"789-806"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward a Semi-Supervised Learning Approach to Phylogenetic Estimation.\",\"authors\":\"Daniele Silvestro, Thibault Latrille, Nicolas Salamin\",\"doi\":\"10.1093/sysbio/syae029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Models have always been central to inferring molecular evolution and to reconstructing phylogenetic trees. Their use typically involves the development of a mechanistic framework reflecting our understanding of the underlying biological processes, such as nucleotide substitutions, and the estimation of model parameters by maximum likelihood or Bayesian inference. However, deriving and optimizing the likelihood of the data is not always possible under complex evolutionary scenarios or even tractable for large datasets, often leading to unrealistic simplifying assumptions in the fitted models. To overcome this issue, we coupled stochastic simulations of genome evolution with a new supervised deep-learning model to infer key parameters of molecular evolution. Our model is designed to directly analyze multiple sequence alignments and estimate per-site evolutionary rates and divergence without requiring a known phylogenetic tree. The accuracy of our predictions matched that of likelihood-based phylogenetic inference when rate heterogeneity followed a simple gamma distribution, but it strongly exceeded it under more complex patterns of rate variation, such as codon models. Our approach is highly scalable and can be efficiently applied to genomic data, as we showed on a dataset of 26 million nucleotides from the clownfish clade. Our simulations also showed that the integration of per-site rates obtained by deep learning within a Bayesian framework led to significantly more accurate phylogenetic inference, particularly with respect to the estimated branch lengths. We thus propose that future advancements in phylogenetic analysis will benefit from a semi-supervised learning approach that combines deep-learning estimation of substitution rates, which allows for more flexible models of rate variation, and probabilistic inference of the phylogenetic tree, which guarantees interpretability and a rigorous assessment of statistical support.</p>\",\"PeriodicalId\":22120,\"journal\":{\"name\":\"Systematic Biology\",\"volume\":\" \",\"pages\":\"789-806\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/sysbio/syae029\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syae029","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Toward a Semi-Supervised Learning Approach to Phylogenetic Estimation.
Models have always been central to inferring molecular evolution and to reconstructing phylogenetic trees. Their use typically involves the development of a mechanistic framework reflecting our understanding of the underlying biological processes, such as nucleotide substitutions, and the estimation of model parameters by maximum likelihood or Bayesian inference. However, deriving and optimizing the likelihood of the data is not always possible under complex evolutionary scenarios or even tractable for large datasets, often leading to unrealistic simplifying assumptions in the fitted models. To overcome this issue, we coupled stochastic simulations of genome evolution with a new supervised deep-learning model to infer key parameters of molecular evolution. Our model is designed to directly analyze multiple sequence alignments and estimate per-site evolutionary rates and divergence without requiring a known phylogenetic tree. The accuracy of our predictions matched that of likelihood-based phylogenetic inference when rate heterogeneity followed a simple gamma distribution, but it strongly exceeded it under more complex patterns of rate variation, such as codon models. Our approach is highly scalable and can be efficiently applied to genomic data, as we showed on a dataset of 26 million nucleotides from the clownfish clade. Our simulations also showed that the integration of per-site rates obtained by deep learning within a Bayesian framework led to significantly more accurate phylogenetic inference, particularly with respect to the estimated branch lengths. We thus propose that future advancements in phylogenetic analysis will benefit from a semi-supervised learning approach that combines deep-learning estimation of substitution rates, which allows for more flexible models of rate variation, and probabilistic inference of the phylogenetic tree, which guarantees interpretability and a rigorous assessment of statistical support.
期刊介绍:
Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.