揭示人体排泄物中隐藏在大颗粒塑料粒子背后的小颗粒塑料粒子及其潜在来源。

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2024-06-26 DOI:10.1021/acs.est.3c11054
Long Zhu, Zhixin Wu, Jiao Dong, Shaoyan Zhao, Jingying Zhu, Weiping Wang, Fujun Ma* and Lihui An*, 
{"title":"揭示人体排泄物中隐藏在大颗粒塑料粒子背后的小颗粒塑料粒子及其潜在来源。","authors":"Long Zhu,&nbsp;Zhixin Wu,&nbsp;Jiao Dong,&nbsp;Shaoyan Zhao,&nbsp;Jingying Zhu,&nbsp;Weiping Wang,&nbsp;Fujun Ma* and Lihui An*,&nbsp;","doi":"10.1021/acs.est.3c11054","DOIUrl":null,"url":null,"abstract":"<p >Health risks of microplastic exposure have drawn growing global concerns due to the widespread distribution of microplastics in the environment. However, more evidence is needed to understand the exposure characteristics of microplastics owing to the limitation of current spectrum technologies, especially the missing information on small-sized particles. In the present study, laser direct infrared spectroscopy and thermal desorption-gas chromatography–mass spectrometry combined pyrolysis using a tubular furnace (TD-GC/MS) were employed to comprehensively detect the presence of plastic particles down to 0.22 μm in human excreted samples. The results showed that polyethylene (PE), polyvinyl chloride, PE terephthalate (PET), and polypropylene dominated large-sized (&gt;20 μm) and small-sized plastic plastics (0.22–20 μm) in feces and urine. Moreover, fragments accounted for 60.71 and 60.37% in feces and urine, respectively, representing the most pervasive shape in excretion. Surprisingly, the concentration of small-sized particles was significantly higher than that of large-sized microplastics, accounting for 56.54 and 50.07% in feces (345.58 μg/g) and urine (6.49 μg/mL). Significant positive correlations were observed between the level of plastic particles in feces and the use of plastic containers and the consumption of aquatic products (Spearman correlation analysis, <i>p</i> &lt; 0.01), suggesting the potential sources for plastic particles in humans. Furthermore, it is estimated that feces was the primary excretory pathway, consisting of 94.0% of total excreted microplastics daily. This study provides novel evidence regarding small-sized plastic particles, which are predominant fractions in human excretion, increasing the knowledge of the potential hazards of omnipresent microplastics to human exposure.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":null,"pages":null},"PeriodicalIF":10.8000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Small-Sized Plastic Particles Hidden behind Large-Sized Ones in Human Excretion and Their Potential Sources\",\"authors\":\"Long Zhu,&nbsp;Zhixin Wu,&nbsp;Jiao Dong,&nbsp;Shaoyan Zhao,&nbsp;Jingying Zhu,&nbsp;Weiping Wang,&nbsp;Fujun Ma* and Lihui An*,&nbsp;\",\"doi\":\"10.1021/acs.est.3c11054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Health risks of microplastic exposure have drawn growing global concerns due to the widespread distribution of microplastics in the environment. However, more evidence is needed to understand the exposure characteristics of microplastics owing to the limitation of current spectrum technologies, especially the missing information on small-sized particles. In the present study, laser direct infrared spectroscopy and thermal desorption-gas chromatography–mass spectrometry combined pyrolysis using a tubular furnace (TD-GC/MS) were employed to comprehensively detect the presence of plastic particles down to 0.22 μm in human excreted samples. The results showed that polyethylene (PE), polyvinyl chloride, PE terephthalate (PET), and polypropylene dominated large-sized (&gt;20 μm) and small-sized plastic plastics (0.22–20 μm) in feces and urine. Moreover, fragments accounted for 60.71 and 60.37% in feces and urine, respectively, representing the most pervasive shape in excretion. Surprisingly, the concentration of small-sized particles was significantly higher than that of large-sized microplastics, accounting for 56.54 and 50.07% in feces (345.58 μg/g) and urine (6.49 μg/mL). Significant positive correlations were observed between the level of plastic particles in feces and the use of plastic containers and the consumption of aquatic products (Spearman correlation analysis, <i>p</i> &lt; 0.01), suggesting the potential sources for plastic particles in humans. Furthermore, it is estimated that feces was the primary excretory pathway, consisting of 94.0% of total excreted microplastics daily. This study provides novel evidence regarding small-sized plastic particles, which are predominant fractions in human excretion, increasing the knowledge of the potential hazards of omnipresent microplastics to human exposure.</p>\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.est.3c11054\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.3c11054","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

由于微塑料在环境中的广泛分布,微塑料暴露的健康风险已引起全球越来越多的关注。然而,由于目前光谱技术的局限性,特别是缺少关于小尺寸颗粒的信息,因此需要更多证据来了解微塑料的暴露特征。本研究采用激光直接红外光谱法和管式炉热吸附-气相色谱-质谱联用热解技术(TD-GC/MS)全面检测了人体排泄物样本中0.22微米以下塑料微粒的存在。结果表明,粪便和尿液中的大尺寸塑料(大于 20 μm)和小尺寸塑料(0.22-20 μm)主要是聚乙烯(PE)、聚氯乙烯(PVC)、对苯二甲酸聚乙烯(PET)和聚丙烯。此外,碎片在粪便和尿液中分别占 60.71% 和 60.37%,是排泄物中最常见的形状。令人惊讶的是,粪便(345.58 μg/g)和尿液(6.49 μg/mL)中小尺寸颗粒的浓度明显高于大尺寸微塑料,分别占56.54%和50.07%。粪便中的塑料微粒含量与使用塑料容器和食用水产品之间存在明显的正相关关系(斯皮尔曼相关分析,p < 0.01),这表明人类体内存在潜在的塑料微粒来源。此外,据估计,粪便是主要的排泄途径,占每天排泄的微塑料总量的 94.0%。这项研究提供了有关小尺寸塑料微粒的新证据,这些微粒是人体排泄物中的主要成分,从而增加了人们对无处不在的微塑料对人体接触的潜在危害的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling Small-Sized Plastic Particles Hidden behind Large-Sized Ones in Human Excretion and Their Potential Sources

Health risks of microplastic exposure have drawn growing global concerns due to the widespread distribution of microplastics in the environment. However, more evidence is needed to understand the exposure characteristics of microplastics owing to the limitation of current spectrum technologies, especially the missing information on small-sized particles. In the present study, laser direct infrared spectroscopy and thermal desorption-gas chromatography–mass spectrometry combined pyrolysis using a tubular furnace (TD-GC/MS) were employed to comprehensively detect the presence of plastic particles down to 0.22 μm in human excreted samples. The results showed that polyethylene (PE), polyvinyl chloride, PE terephthalate (PET), and polypropylene dominated large-sized (>20 μm) and small-sized plastic plastics (0.22–20 μm) in feces and urine. Moreover, fragments accounted for 60.71 and 60.37% in feces and urine, respectively, representing the most pervasive shape in excretion. Surprisingly, the concentration of small-sized particles was significantly higher than that of large-sized microplastics, accounting for 56.54 and 50.07% in feces (345.58 μg/g) and urine (6.49 μg/mL). Significant positive correlations were observed between the level of plastic particles in feces and the use of plastic containers and the consumption of aquatic products (Spearman correlation analysis, p < 0.01), suggesting the potential sources for plastic particles in humans. Furthermore, it is estimated that feces was the primary excretory pathway, consisting of 94.0% of total excreted microplastics daily. This study provides novel evidence regarding small-sized plastic particles, which are predominant fractions in human excretion, increasing the knowledge of the potential hazards of omnipresent microplastics to human exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Crystalline Phase Regulates Microbial Methylation Potential of Mercury Bound to MoS2 Nanosheets: Implications for Safe Design of Mercury Removal Materials. New Perspective to Evaluate the Carbon Offsetting by Urban Blue-Green Infrastructure: Direct Carbon Sequestration and Indirect Carbon Reduction. Occurrence, Sources and Virulence Potential of Arcobacter butzleri in Urban Municipal Stormwater Systems. Viral and Bacterial Community Dynamics in Food Waste and Digestate from Full-Scale Biogas Plants. High-Resolution Mass Spectrometry for Human Exposomics: Expanding Chemical Space Coverage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1