{"title":"具有反应延迟的分数阶系统虚拟稳定过程中的人类表现。","authors":"Tamas Balogh, Balazs A Kovacs, Tamas Insperger","doi":"10.1098/rsif.2023.0685","DOIUrl":null,"url":null,"abstract":"<p><p>Virtual balancing tasks facilitate the study of human motion control: human reaction to the change of artificially introduced parameters can be studied in a computer environment. In this article, the dynamics of human stick balancing are generalized using fractional-order derivatives. Reaction delay sets a strong limitation on the length of the shortest stick that human subjects can balance. Human processing of visual input also exhibits a memory effect, which can be modelled by fractional-order derivatives. Therefore, we hypothesize a delayed fractional-order PD control of the unstable fractional-order process. The resulting equation of motion is investigated in a dimensionless framework, and stabilizability limits are determined as a function of the dynamics's order. These theoretical limits are then compared with the results of a systematic series of virtual balancing tests performed by 18 subjects. The comparison shows that the theoretical stabilizability limits for controllers with fixed fractional order correspond to the measured data points. The best fit is obtained if the fractional order of the underlying control law is 0.475.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 215","pages":"20230685"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285844/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human performance in virtual stabilization of a fractional-order system with reaction delay.\",\"authors\":\"Tamas Balogh, Balazs A Kovacs, Tamas Insperger\",\"doi\":\"10.1098/rsif.2023.0685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Virtual balancing tasks facilitate the study of human motion control: human reaction to the change of artificially introduced parameters can be studied in a computer environment. In this article, the dynamics of human stick balancing are generalized using fractional-order derivatives. Reaction delay sets a strong limitation on the length of the shortest stick that human subjects can balance. Human processing of visual input also exhibits a memory effect, which can be modelled by fractional-order derivatives. Therefore, we hypothesize a delayed fractional-order PD control of the unstable fractional-order process. The resulting equation of motion is investigated in a dimensionless framework, and stabilizability limits are determined as a function of the dynamics's order. These theoretical limits are then compared with the results of a systematic series of virtual balancing tests performed by 18 subjects. The comparison shows that the theoretical stabilizability limits for controllers with fixed fractional order correspond to the measured data points. The best fit is obtained if the fractional order of the underlying control law is 0.475.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 215\",\"pages\":\"20230685\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285844/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2023.0685\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2023.0685","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Human performance in virtual stabilization of a fractional-order system with reaction delay.
Virtual balancing tasks facilitate the study of human motion control: human reaction to the change of artificially introduced parameters can be studied in a computer environment. In this article, the dynamics of human stick balancing are generalized using fractional-order derivatives. Reaction delay sets a strong limitation on the length of the shortest stick that human subjects can balance. Human processing of visual input also exhibits a memory effect, which can be modelled by fractional-order derivatives. Therefore, we hypothesize a delayed fractional-order PD control of the unstable fractional-order process. The resulting equation of motion is investigated in a dimensionless framework, and stabilizability limits are determined as a function of the dynamics's order. These theoretical limits are then compared with the results of a systematic series of virtual balancing tests performed by 18 subjects. The comparison shows that the theoretical stabilizability limits for controllers with fixed fractional order correspond to the measured data points. The best fit is obtained if the fractional order of the underlying control law is 0.475.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.