Syeda Rehana Zia , Adriana Coricello , Giovanni Bottegoni
{"title":"提高模拟蛋白质配体结合和解除结合方法的处理量。","authors":"Syeda Rehana Zia , Adriana Coricello , Giovanni Bottegoni","doi":"10.1016/j.sbi.2024.102871","DOIUrl":null,"url":null,"abstract":"<div><p>By incorporating full flexibility and enabling the quantification of crucial parameters such as binding free energies and residence times, methods for investigating protein-ligand binding and unbinding via molecular dynamics provide details on the involved mechanisms at the molecular level. While these advancements hold promise for impacting drug discovery, a notable drawback persists: their relatively time-consuming nature limits throughput. Herein, we survey recent implementations which, employing a blend of enhanced sampling techniques, a clever choice of collective variables, and often machine learning, strive to enhance the efficiency of new and previously reported methods without compromising accuracy. Particularly noteworthy is the validation of these methods that was often performed on systems mirroring real-world drug discovery scenarios.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"87 ","pages":"Article 102871"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0959440X24000988/pdfft?md5=7c9ba0c1da68f50382108389cb8707f1&pid=1-s2.0-S0959440X24000988-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Increased throughput in methods for simulating protein ligand binding and unbinding\",\"authors\":\"Syeda Rehana Zia , Adriana Coricello , Giovanni Bottegoni\",\"doi\":\"10.1016/j.sbi.2024.102871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By incorporating full flexibility and enabling the quantification of crucial parameters such as binding free energies and residence times, methods for investigating protein-ligand binding and unbinding via molecular dynamics provide details on the involved mechanisms at the molecular level. While these advancements hold promise for impacting drug discovery, a notable drawback persists: their relatively time-consuming nature limits throughput. Herein, we survey recent implementations which, employing a blend of enhanced sampling techniques, a clever choice of collective variables, and often machine learning, strive to enhance the efficiency of new and previously reported methods without compromising accuracy. Particularly noteworthy is the validation of these methods that was often performed on systems mirroring real-world drug discovery scenarios.</p></div>\",\"PeriodicalId\":10887,\"journal\":{\"name\":\"Current opinion in structural biology\",\"volume\":\"87 \",\"pages\":\"Article 102871\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000988/pdfft?md5=7c9ba0c1da68f50382108389cb8707f1&pid=1-s2.0-S0959440X24000988-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in structural biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959440X24000988\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000988","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Increased throughput in methods for simulating protein ligand binding and unbinding
By incorporating full flexibility and enabling the quantification of crucial parameters such as binding free energies and residence times, methods for investigating protein-ligand binding and unbinding via molecular dynamics provide details on the involved mechanisms at the molecular level. While these advancements hold promise for impacting drug discovery, a notable drawback persists: their relatively time-consuming nature limits throughput. Herein, we survey recent implementations which, employing a blend of enhanced sampling techniques, a clever choice of collective variables, and often machine learning, strive to enhance the efficiency of new and previously reported methods without compromising accuracy. Particularly noteworthy is the validation of these methods that was often performed on systems mirroring real-world drug discovery scenarios.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation