通过序贯真空沉积实现全无机 CsPbI2Br 的可控晶体生长,从而实现高效的 Perovskite 太阳能电池

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-06-27 DOI:10.1021/acsnano.4c03079
Min Hyeong Lee, Dae Woo Kim, Young Wook Noh, Hye Seung Kim, Jongmin Han, Heunjeong Lee, Kyoung Jin Choi, Shinuk Cho* and Myoung Hoon Song*, 
{"title":"通过序贯真空沉积实现全无机 CsPbI2Br 的可控晶体生长,从而实现高效的 Perovskite 太阳能电池","authors":"Min Hyeong Lee,&nbsp;Dae Woo Kim,&nbsp;Young Wook Noh,&nbsp;Hye Seung Kim,&nbsp;Jongmin Han,&nbsp;Heunjeong Lee,&nbsp;Kyoung Jin Choi,&nbsp;Shinuk Cho* and Myoung Hoon Song*,&nbsp;","doi":"10.1021/acsnano.4c03079","DOIUrl":null,"url":null,"abstract":"<p >Vacuum deposition of perovskites is a promising method for scale-up fabrication and uniform film growth. However, improvements in the photovoltaic performance of perovskites are limited by the fabrication of perovskite films, which are not optimized for high device efficiency in the vacuum evaporation process. Herein, we fabricate CsPbI<sub>2</sub>Br perovskite with high crystallinity and larger grain size by controlling the deposition sequence between PbI<sub>2</sub> and CsBr. The nucleation barrier for perovskite formation is significantly lowered by first evaporating CsBr and then PbI<sub>2</sub> (CsBr–PbI<sub>2</sub>), followed by the sequential evaporation of multiple layers. The results show that the reduced Gibbs free energy of CsBr–PbI<sub>2</sub>, compared with that of PbI<sub>2</sub>–CsBr, accelerates perovskite formation, resulting in larger grain size and reduced defect density. Furthermore, surface-modified homojunction perovskites are fabricated to efficiently extract charge carriers and enhance the efficiency of perovskite solar cells (PeSCs) by modulating the final PbI<sub>2</sub> thickness before thermal annealing. Using these strategies, the best PeSC exhibits a power conversion efficiency of 13.41% for a small area (0.135 cm<sup>2</sup>), the highest value among sequential thermal deposition inorganic PeSCs, and 11.10% for a large area PeSC (1 cm<sup>2</sup>). This study presents an effective way to understand the crystal growth of thermally deposited perovskites and improve their performance in optoelectronic devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled Crystal Growth of All-Inorganic CsPbI2Br via Sequential Vacuum Deposition for Efficient Perovskite Solar Cells\",\"authors\":\"Min Hyeong Lee,&nbsp;Dae Woo Kim,&nbsp;Young Wook Noh,&nbsp;Hye Seung Kim,&nbsp;Jongmin Han,&nbsp;Heunjeong Lee,&nbsp;Kyoung Jin Choi,&nbsp;Shinuk Cho* and Myoung Hoon Song*,&nbsp;\",\"doi\":\"10.1021/acsnano.4c03079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Vacuum deposition of perovskites is a promising method for scale-up fabrication and uniform film growth. However, improvements in the photovoltaic performance of perovskites are limited by the fabrication of perovskite films, which are not optimized for high device efficiency in the vacuum evaporation process. Herein, we fabricate CsPbI<sub>2</sub>Br perovskite with high crystallinity and larger grain size by controlling the deposition sequence between PbI<sub>2</sub> and CsBr. The nucleation barrier for perovskite formation is significantly lowered by first evaporating CsBr and then PbI<sub>2</sub> (CsBr–PbI<sub>2</sub>), followed by the sequential evaporation of multiple layers. The results show that the reduced Gibbs free energy of CsBr–PbI<sub>2</sub>, compared with that of PbI<sub>2</sub>–CsBr, accelerates perovskite formation, resulting in larger grain size and reduced defect density. Furthermore, surface-modified homojunction perovskites are fabricated to efficiently extract charge carriers and enhance the efficiency of perovskite solar cells (PeSCs) by modulating the final PbI<sub>2</sub> thickness before thermal annealing. Using these strategies, the best PeSC exhibits a power conversion efficiency of 13.41% for a small area (0.135 cm<sup>2</sup>), the highest value among sequential thermal deposition inorganic PeSCs, and 11.10% for a large area PeSC (1 cm<sup>2</sup>). This study presents an effective way to understand the crystal growth of thermally deposited perovskites and improve their performance in optoelectronic devices.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c03079\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c03079","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

包晶石的真空沉积是一种很有前景的放大制造和薄膜均匀生长的方法。然而,由于在真空蒸发过程中未对包晶薄膜的制造进行优化以实现高器件效率,因此限制了包晶光伏性能的提高。在本文中,我们通过控制 PbI2 和 CsBr 之间的沉积顺序,制备出了具有高结晶度和较大晶粒尺寸的 CsPbI2Br 包晶体。 通过先蒸发 CsBr 后蒸发 PbI2(CsBr-PbI2),再依次蒸发多层,显著降低了包晶体形成的成核势垒。结果表明,与 PbI2-CsBr 相比,CsBr-PbI2 的吉布斯自由能降低,从而加速了包晶的形成,使晶粒尺寸增大,缺陷密度降低。此外,通过在热退火前调节最终的 PbI2 厚度,制备出表面修饰的同质结包晶石,从而有效地提取电荷载流子并提高包晶石太阳能电池(PeSC)的效率。利用这些策略,小面积(0.135 平方厘米)的最佳 PeSC 功率转换效率为 13.41%,是顺序热沉积无机 PeSC 中的最高值;大面积 PeSC(1 平方厘米)的功率转换效率为 11.10%。这项研究为了解热沉积过氧化物晶体的晶体生长和提高其在光电器件中的性能提供了有效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlled Crystal Growth of All-Inorganic CsPbI2Br via Sequential Vacuum Deposition for Efficient Perovskite Solar Cells

Vacuum deposition of perovskites is a promising method for scale-up fabrication and uniform film growth. However, improvements in the photovoltaic performance of perovskites are limited by the fabrication of perovskite films, which are not optimized for high device efficiency in the vacuum evaporation process. Herein, we fabricate CsPbI2Br perovskite with high crystallinity and larger grain size by controlling the deposition sequence between PbI2 and CsBr. The nucleation barrier for perovskite formation is significantly lowered by first evaporating CsBr and then PbI2 (CsBr–PbI2), followed by the sequential evaporation of multiple layers. The results show that the reduced Gibbs free energy of CsBr–PbI2, compared with that of PbI2–CsBr, accelerates perovskite formation, resulting in larger grain size and reduced defect density. Furthermore, surface-modified homojunction perovskites are fabricated to efficiently extract charge carriers and enhance the efficiency of perovskite solar cells (PeSCs) by modulating the final PbI2 thickness before thermal annealing. Using these strategies, the best PeSC exhibits a power conversion efficiency of 13.41% for a small area (0.135 cm2), the highest value among sequential thermal deposition inorganic PeSCs, and 11.10% for a large area PeSC (1 cm2). This study presents an effective way to understand the crystal growth of thermally deposited perovskites and improve their performance in optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Generative Artificial Intelligence for Designing Multi-Scale Hydrogen Fuel Cell Catalyst Layer Nanostructures. Site-Selective Deposition of Silica Nanoframes and Nanocages onto Faceted Gold Nanostructures Using a Primer-free Tetraethyl Orthosilicate Synthesis. Universal Strike-Plating Strategy to Suppress Hydrogen Evolution for Improving Zinc Metal Reversibility. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1