Silver Onyango, Crystal M North, Hatem A Ellaithy, Paul Tumwesigye, Choong-Min Kang, Vasileios Matthaios, Martin Mukama, Nuriat Nambogo, J Mikhail Wolfson, Stephen Ferguson, Stephen Asiimwe, Lynn Atuyambe, Data Santorino, David C Christiani, Petros Koutrakis
{"title":"乌干达姆巴拉拉环境 PM2.5 的时间变化和来源分配。","authors":"Silver Onyango, Crystal M North, Hatem A Ellaithy, Paul Tumwesigye, Choong-Min Kang, Vasileios Matthaios, Martin Mukama, Nuriat Nambogo, J Mikhail Wolfson, Stephen Ferguson, Stephen Asiimwe, Lynn Atuyambe, Data Santorino, David C Christiani, Petros Koutrakis","doi":"10.4209/aaqr.230203","DOIUrl":null,"url":null,"abstract":"<p><p>Air pollution is the leading environmental cause of death globally, and most mortality occurs in resource-limited settings such as sub-Saharan Africa. The African continent experiences some of the worst ambient air pollution in the world, yet there are relatively little African data characterizing ambient pollutant levels and source admixtures. In Uganda, ambient PM<sub>2.5</sub> levels exceed international health standards. However, most studies focus only on urban environments and do not characterize pollutant sources. We measured daily ambient PM<sub>2.5</sub> concentrations and sources in Mbarara, Uganda from May 2018 through February 2019 using Harvard impactors fitted with size-selective inlets. We compared our estimates to publicly available levels in Kampala, and to World Health Organization (WHO) air quality guidelines. We characterized the leading PM<sub>2.5</sub> sources in Mbarara using x-ray fluorescence and positive matrix factorization. Daily PM<sub>2.5</sub> concentrations were 26.7 μg m<sup>-3</sup> and 59.4 μg m<sup>-3</sup> in Mbarara and Kampala, respectively (p<0.001). PM<sub>2.5</sub> concentrations exceeded WHO guidelines on 58% of days in Mbarara and 99% of days in Kampala. In Mbarara, PM<sub>2.5</sub> was higher in the dry as compared to the rainy season (30.8 vs 21.3, p<0.001), while seasonal variation was not observed in Kampala. PM<sub>2.5</sub> concentrations did not vary on weekdays versus weekends in either city. In Mbarara, the six main ambient PM<sub>2.5</sub> sources identified included (in order of abundance): traffic-related, biomass and secondary aerosols, industry and metallurgy, heavy oil and fuel combustion, fine soil, and salt aerosol. Our findings confirm that air quality in southwestern Uganda is unsafe and that mitigation efforts are urgently needed. Ongoing work focused on improving air quality in the region may have the greatest impact if focused on traffic and biomass-related sources.</p>","PeriodicalId":7402,"journal":{"name":"Aerosol and Air Quality Research","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212479/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ambient PM<sub>2.5</sub> temporal variation and source apportionment in Mbarara, Uganda.\",\"authors\":\"Silver Onyango, Crystal M North, Hatem A Ellaithy, Paul Tumwesigye, Choong-Min Kang, Vasileios Matthaios, Martin Mukama, Nuriat Nambogo, J Mikhail Wolfson, Stephen Ferguson, Stephen Asiimwe, Lynn Atuyambe, Data Santorino, David C Christiani, Petros Koutrakis\",\"doi\":\"10.4209/aaqr.230203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Air pollution is the leading environmental cause of death globally, and most mortality occurs in resource-limited settings such as sub-Saharan Africa. The African continent experiences some of the worst ambient air pollution in the world, yet there are relatively little African data characterizing ambient pollutant levels and source admixtures. In Uganda, ambient PM<sub>2.5</sub> levels exceed international health standards. However, most studies focus only on urban environments and do not characterize pollutant sources. We measured daily ambient PM<sub>2.5</sub> concentrations and sources in Mbarara, Uganda from May 2018 through February 2019 using Harvard impactors fitted with size-selective inlets. We compared our estimates to publicly available levels in Kampala, and to World Health Organization (WHO) air quality guidelines. We characterized the leading PM<sub>2.5</sub> sources in Mbarara using x-ray fluorescence and positive matrix factorization. Daily PM<sub>2.5</sub> concentrations were 26.7 μg m<sup>-3</sup> and 59.4 μg m<sup>-3</sup> in Mbarara and Kampala, respectively (p<0.001). PM<sub>2.5</sub> concentrations exceeded WHO guidelines on 58% of days in Mbarara and 99% of days in Kampala. In Mbarara, PM<sub>2.5</sub> was higher in the dry as compared to the rainy season (30.8 vs 21.3, p<0.001), while seasonal variation was not observed in Kampala. PM<sub>2.5</sub> concentrations did not vary on weekdays versus weekends in either city. In Mbarara, the six main ambient PM<sub>2.5</sub> sources identified included (in order of abundance): traffic-related, biomass and secondary aerosols, industry and metallurgy, heavy oil and fuel combustion, fine soil, and salt aerosol. Our findings confirm that air quality in southwestern Uganda is unsafe and that mitigation efforts are urgently needed. Ongoing work focused on improving air quality in the region may have the greatest impact if focused on traffic and biomass-related sources.</p>\",\"PeriodicalId\":7402,\"journal\":{\"name\":\"Aerosol and Air Quality Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11212479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerosol and Air Quality Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4209/aaqr.230203\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol and Air Quality Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4209/aaqr.230203","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ambient PM2.5 temporal variation and source apportionment in Mbarara, Uganda.
Air pollution is the leading environmental cause of death globally, and most mortality occurs in resource-limited settings such as sub-Saharan Africa. The African continent experiences some of the worst ambient air pollution in the world, yet there are relatively little African data characterizing ambient pollutant levels and source admixtures. In Uganda, ambient PM2.5 levels exceed international health standards. However, most studies focus only on urban environments and do not characterize pollutant sources. We measured daily ambient PM2.5 concentrations and sources in Mbarara, Uganda from May 2018 through February 2019 using Harvard impactors fitted with size-selective inlets. We compared our estimates to publicly available levels in Kampala, and to World Health Organization (WHO) air quality guidelines. We characterized the leading PM2.5 sources in Mbarara using x-ray fluorescence and positive matrix factorization. Daily PM2.5 concentrations were 26.7 μg m-3 and 59.4 μg m-3 in Mbarara and Kampala, respectively (p<0.001). PM2.5 concentrations exceeded WHO guidelines on 58% of days in Mbarara and 99% of days in Kampala. In Mbarara, PM2.5 was higher in the dry as compared to the rainy season (30.8 vs 21.3, p<0.001), while seasonal variation was not observed in Kampala. PM2.5 concentrations did not vary on weekdays versus weekends in either city. In Mbarara, the six main ambient PM2.5 sources identified included (in order of abundance): traffic-related, biomass and secondary aerosols, industry and metallurgy, heavy oil and fuel combustion, fine soil, and salt aerosol. Our findings confirm that air quality in southwestern Uganda is unsafe and that mitigation efforts are urgently needed. Ongoing work focused on improving air quality in the region may have the greatest impact if focused on traffic and biomass-related sources.
期刊介绍:
The international journal of Aerosol and Air Quality Research (AAQR) covers all aspects of aerosol science and technology, atmospheric science and air quality related issues. It encompasses a multi-disciplinary field, including:
- Aerosol, air quality, atmospheric chemistry and global change;
- Air toxics (hazardous air pollutants (HAPs), persistent organic pollutants (POPs)) - Sources, control, transport and fate, human exposure;
- Nanoparticle and nanotechnology;
- Sources, combustion, thermal decomposition, emission, properties, behavior, formation, transport, deposition, measurement and analysis;
- Effects on the environments;
- Air quality and human health;
- Bioaerosols;
- Indoor air quality;
- Energy and air pollution;
- Pollution control technologies;
- Invention and improvement of sampling instruments and technologies;
- Optical/radiative properties and remote sensing;
- Carbon dioxide emission, capture, storage and utilization; novel methods for the reduction of carbon dioxide emission;
- Other topics related to aerosol and air quality.