二维半导体的未来超越摩尔定律

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-07-01 DOI:10.1038/s41565-024-01695-1
Ki Seok Kim, Junyoung Kwon, Huije Ryu, Changhyun Kim, Hyunseok Kim, Eun-Kyu Lee, Doyoon Lee, Seunghwan Seo, Ne Myo Han, Jun Min Suh, Jekyung Kim, Min-Kyu Song, Sangho Lee, Minsu Seol, Jeehwan Kim
{"title":"二维半导体的未来超越摩尔定律","authors":"Ki Seok Kim, Junyoung Kwon, Huije Ryu, Changhyun Kim, Hyunseok Kim, Eun-Kyu Lee, Doyoon Lee, Seunghwan Seo, Ne Myo Han, Jun Min Suh, Jekyung Kim, Min-Kyu Song, Sangho Lee, Minsu Seol, Jeehwan Kim","doi":"10.1038/s41565-024-01695-1","DOIUrl":null,"url":null,"abstract":"The primary challenge facing silicon-based electronics, crucial for modern technological progress, is difficulty in dimensional scaling. This stems from a severe deterioration of transistor performance due to carrier scattering when silicon thickness is reduced below a few nanometres. Atomically thin two-dimensional (2D) semiconductors still maintain their electrical characteristics even at sub-nanometre scales and offer the potential for monolithic three-dimensional (3D) integration. Here we explore a strategic shift aimed at addressing the scaling bottleneck of silicon by adopting 2D semiconductors as new channel materials. Examining both academic and industrial viewpoints, we delve into the latest trends in channel materials, the integration of metal contacts and gate dielectrics, and offer insights into the emerging landscape of industrializing 2D semiconductor-based transistors for monolithic 3D integration. This Review explores adopting 2D semiconductors to overcome the scaling bottleneck of Si-based electronics. Recent trends and potential approaches for the development of 2D materials as a channel are discussed. Following this, the prerequisites, obstacles and feasible technologies for integrating contacts and gate dielectrics with 2D semiconductor-based channels are examined. The Review also provides an industrial perspective towards facilitating monolithic 3D integration.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The future of two-dimensional semiconductors beyond Moore’s law\",\"authors\":\"Ki Seok Kim, Junyoung Kwon, Huije Ryu, Changhyun Kim, Hyunseok Kim, Eun-Kyu Lee, Doyoon Lee, Seunghwan Seo, Ne Myo Han, Jun Min Suh, Jekyung Kim, Min-Kyu Song, Sangho Lee, Minsu Seol, Jeehwan Kim\",\"doi\":\"10.1038/s41565-024-01695-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The primary challenge facing silicon-based electronics, crucial for modern technological progress, is difficulty in dimensional scaling. This stems from a severe deterioration of transistor performance due to carrier scattering when silicon thickness is reduced below a few nanometres. Atomically thin two-dimensional (2D) semiconductors still maintain their electrical characteristics even at sub-nanometre scales and offer the potential for monolithic three-dimensional (3D) integration. Here we explore a strategic shift aimed at addressing the scaling bottleneck of silicon by adopting 2D semiconductors as new channel materials. Examining both academic and industrial viewpoints, we delve into the latest trends in channel materials, the integration of metal contacts and gate dielectrics, and offer insights into the emerging landscape of industrializing 2D semiconductor-based transistors for monolithic 3D integration. This Review explores adopting 2D semiconductors to overcome the scaling bottleneck of Si-based electronics. Recent trends and potential approaches for the development of 2D materials as a channel are discussed. Following this, the prerequisites, obstacles and feasible technologies for integrating contacts and gate dielectrics with 2D semiconductor-based channels are examined. The Review also provides an industrial perspective towards facilitating monolithic 3D integration.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-024-01695-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01695-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硅基电子器件对现代技术进步至关重要,而硅基电子器件面临的主要挑战是尺寸缩放困难。这是因为当硅厚度减小到几纳米以下时,载流子散射会导致晶体管性能严重下降。即使在亚纳米尺度上,原子薄的二维(2D)半导体仍能保持其电气特性,并为单片三维(3D)集成提供了潜力。在此,我们探讨了一种战略转变,旨在通过采用二维半导体作为新的沟道材料来解决硅的扩展瓶颈。通过研究学术界和工业界的观点,我们深入探讨了沟道材料的最新趋势、金属触点和栅电介质的集成,并对基于二维半导体的晶体管实现单片三维集成的工业化的新兴前景提出了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The future of two-dimensional semiconductors beyond Moore’s law
The primary challenge facing silicon-based electronics, crucial for modern technological progress, is difficulty in dimensional scaling. This stems from a severe deterioration of transistor performance due to carrier scattering when silicon thickness is reduced below a few nanometres. Atomically thin two-dimensional (2D) semiconductors still maintain their electrical characteristics even at sub-nanometre scales and offer the potential for monolithic three-dimensional (3D) integration. Here we explore a strategic shift aimed at addressing the scaling bottleneck of silicon by adopting 2D semiconductors as new channel materials. Examining both academic and industrial viewpoints, we delve into the latest trends in channel materials, the integration of metal contacts and gate dielectrics, and offer insights into the emerging landscape of industrializing 2D semiconductor-based transistors for monolithic 3D integration. This Review explores adopting 2D semiconductors to overcome the scaling bottleneck of Si-based electronics. Recent trends and potential approaches for the development of 2D materials as a channel are discussed. Following this, the prerequisites, obstacles and feasible technologies for integrating contacts and gate dielectrics with 2D semiconductor-based channels are examined. The Review also provides an industrial perspective towards facilitating monolithic 3D integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output Targeted intervention in nerve–cancer crosstalk enhances pancreatic cancer chemotherapy Blue lasers using low-toxicity colloidal quantum dots Universal control of four singlet–triplet qubits Small structural changes in siloxane-based lipidoids improve tissue-specific mRNA delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1