利用不确定性引导的 PGCNN 加速聚合物发现:可解释的人工智能,用于预测特性和机理洞察。

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL Journal of Chemical Information and Modeling Pub Date : 2024-07-02 DOI:10.1021/acs.jcim.4c00555
Shuyu Wang, Hongxing Yue, Xiaoming Yuan
{"title":"利用不确定性引导的 PGCNN 加速聚合物发现:可解释的人工智能,用于预测特性和机理洞察。","authors":"Shuyu Wang, Hongxing Yue, Xiaoming Yuan","doi":"10.1021/acs.jcim.4c00555","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning holds great potential for expediting the discovery of new polymers from the vast chemical space. However, accurately predicting polymer properties for practical applications based on their monomer composition has long been a challenge. The main obstacles include insufficient data, ineffective representation encoding, and lack of explainability. To address these issues, we propose an interpretable model called the Polymer Graph Convolutional Neural Network (PGCNN) that can accurately predict various polymer properties. This model is trained using the RadonPy data set and validated using experimental data samples. By integrating evidential deep learning with the model, we can quantify the uncertainty of predictions and enable sample-efficient training through uncertainty-guided active learning. Additionally, we demonstrate that the global attention of the graph embedding can aid in discovering underlying physical principles by identifying important functional groups within polymers and associating them with specific material attributes. Lastly, we explore the high-throughput screening capability of our model by rapidly identifying thousands of promising candidates with low and high thermal conductivity from a pool of one million hypothetical polymers. In summary, our research not only advances our mechanistic understanding of polymers using explainable AI but also paves the way for data-driven trustworthy discovery of polymer materials.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Polymer Discovery with Uncertainty-Guided PGCNN: Explainable AI for Predicting Properties and Mechanistic Insights.\",\"authors\":\"Shuyu Wang, Hongxing Yue, Xiaoming Yuan\",\"doi\":\"10.1021/acs.jcim.4c00555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning holds great potential for expediting the discovery of new polymers from the vast chemical space. However, accurately predicting polymer properties for practical applications based on their monomer composition has long been a challenge. The main obstacles include insufficient data, ineffective representation encoding, and lack of explainability. To address these issues, we propose an interpretable model called the Polymer Graph Convolutional Neural Network (PGCNN) that can accurately predict various polymer properties. This model is trained using the RadonPy data set and validated using experimental data samples. By integrating evidential deep learning with the model, we can quantify the uncertainty of predictions and enable sample-efficient training through uncertainty-guided active learning. Additionally, we demonstrate that the global attention of the graph embedding can aid in discovering underlying physical principles by identifying important functional groups within polymers and associating them with specific material attributes. Lastly, we explore the high-throughput screening capability of our model by rapidly identifying thousands of promising candidates with low and high thermal conductivity from a pool of one million hypothetical polymers. In summary, our research not only advances our mechanistic understanding of polymers using explainable AI but also paves the way for data-driven trustworthy discovery of polymer materials.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c00555\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c00555","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

深度学习在加速从广阔的化学空间中发现新聚合物方面具有巨大潜力。然而,根据单体成分准确预测实际应用中的聚合物特性一直是个难题。主要障碍包括数据不足、表征编码无效以及缺乏可解释性。为了解决这些问题,我们提出了一种可解释的模型,即聚合物图卷积神经网络(PGCNN),它可以准确预测各种聚合物特性。该模型使用 RadonPy 数据集进行训练,并使用实验数据样本进行验证。通过将证据深度学习与该模型相结合,我们可以量化预测的不确定性,并通过不确定性引导的主动学习实现样本高效训练。此外,我们还证明了图嵌入的全局注意力可以通过识别聚合物中的重要官能团并将它们与特定材料属性联系起来,帮助发现潜在的物理原理。最后,我们从一百万种假设聚合物中快速识别出数千种具有低导热性和高导热性的候选聚合物,从而探索了我们模型的高通量筛选能力。总之,我们的研究不仅利用可解释的人工智能推进了我们对聚合物的机理理解,还为数据驱动的聚合物材料可信发现铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Polymer Discovery with Uncertainty-Guided PGCNN: Explainable AI for Predicting Properties and Mechanistic Insights.

Deep learning holds great potential for expediting the discovery of new polymers from the vast chemical space. However, accurately predicting polymer properties for practical applications based on their monomer composition has long been a challenge. The main obstacles include insufficient data, ineffective representation encoding, and lack of explainability. To address these issues, we propose an interpretable model called the Polymer Graph Convolutional Neural Network (PGCNN) that can accurately predict various polymer properties. This model is trained using the RadonPy data set and validated using experimental data samples. By integrating evidential deep learning with the model, we can quantify the uncertainty of predictions and enable sample-efficient training through uncertainty-guided active learning. Additionally, we demonstrate that the global attention of the graph embedding can aid in discovering underlying physical principles by identifying important functional groups within polymers and associating them with specific material attributes. Lastly, we explore the high-throughput screening capability of our model by rapidly identifying thousands of promising candidates with low and high thermal conductivity from a pool of one million hypothetical polymers. In summary, our research not only advances our mechanistic understanding of polymers using explainable AI but also paves the way for data-driven trustworthy discovery of polymer materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
期刊最新文献
Accurately Computing the Interacted Volume of Molecules over Their 3D Mesh Models. Learning Force Field Parameters from Differentiable Particle-Field Molecular Dynamics. A λ-Dynamics Investigation of Insulin Wakayama and Other A3 Variant Binding Affinities to the Insulin Receptor. Chemoinformatics Insights on Molecular Jackhammers and Cancer Cells. Docking Score ML: Target-Specific Machine Learning Models Improving Docking-Based Virtual Screening in 155 Targets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1