Aldes Lesbani , Nur Ahmad , Risfidian Mohadi , Idha Royani , Sahrul Wibiyan , Amri , Yulizah Hanifah
{"title":"层状双氢氧化物对阳离子染料的选择性吸附,辅助藻类(螺旋藻)富集功能基团","authors":"Aldes Lesbani , Nur Ahmad , Risfidian Mohadi , Idha Royani , Sahrul Wibiyan , Amri , Yulizah Hanifah","doi":"10.1016/j.jciso.2024.100118","DOIUrl":null,"url":null,"abstract":"<div><p>The present study involved the preparation, characterization, and evaluation of layered double hydroxide (LDH) with the assistance of the algae <em>Spirulina platensis</em> (NiAl-Sp and ZnAl-Sp). These materials were investigated for their potential for selective adsorption of cationic dyes, including rhodamine B, malachite green, and methylene blue. The adsorbents exhibit a significant level of selectivity in their capacity to adsorb malachite green in comparison to other cationic dyes. The next parameter of adsorption was evaluated in malachite green as the selective adsorption of cationic dyes. Based on the Langmuir isotherm model, the calculated maximum adsorption capacities of NiAl-Sp and ZnAl-Sp for malachite green were determined to be 478.190 mg/g (pH = 4, 50 °C for 30 min) and 123.457 mg/g (pH = 4, 30 °C for 30 min), respectively. The main processes of adsorption encompassed not only electrostatic interactions but also hydrogen bonding and π-π interactions involving the dye and the amino, hydroxyl, and carboxyl functional groups derived from <em>Spirulina platensis</em>. <em>Spirulina platensis</em> enhances the functional group of LDH. The findings of this study indicate that the NiAl-Sp and ZnAl-Sp composite demonstrated stability as a sorbent for the adsorption of malachite green. Furthermore, it was observed that this composite could be utilized for up to four adsorption cycles, but there was a noticeable decrease in its adsorption capability over time. The findings revealed that the synthesized composite adsorbents of NiAl-Sp and ZnAl-Sp exhibit high efficacy in the adsorption of malachite green from effluent.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"15 ","pages":"Article 100118"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000187/pdfft?md5=4428bec74e6a77c1e24c34aae21d7410&pid=1-s2.0-S2666934X24000187-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Selective adsorption of cationic dyes by layered double hydroxide with assist algae (Spirulina platensis) to enrich functional groups\",\"authors\":\"Aldes Lesbani , Nur Ahmad , Risfidian Mohadi , Idha Royani , Sahrul Wibiyan , Amri , Yulizah Hanifah\",\"doi\":\"10.1016/j.jciso.2024.100118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study involved the preparation, characterization, and evaluation of layered double hydroxide (LDH) with the assistance of the algae <em>Spirulina platensis</em> (NiAl-Sp and ZnAl-Sp). These materials were investigated for their potential for selective adsorption of cationic dyes, including rhodamine B, malachite green, and methylene blue. The adsorbents exhibit a significant level of selectivity in their capacity to adsorb malachite green in comparison to other cationic dyes. The next parameter of adsorption was evaluated in malachite green as the selective adsorption of cationic dyes. Based on the Langmuir isotherm model, the calculated maximum adsorption capacities of NiAl-Sp and ZnAl-Sp for malachite green were determined to be 478.190 mg/g (pH = 4, 50 °C for 30 min) and 123.457 mg/g (pH = 4, 30 °C for 30 min), respectively. The main processes of adsorption encompassed not only electrostatic interactions but also hydrogen bonding and π-π interactions involving the dye and the amino, hydroxyl, and carboxyl functional groups derived from <em>Spirulina platensis</em>. <em>Spirulina platensis</em> enhances the functional group of LDH. The findings of this study indicate that the NiAl-Sp and ZnAl-Sp composite demonstrated stability as a sorbent for the adsorption of malachite green. Furthermore, it was observed that this composite could be utilized for up to four adsorption cycles, but there was a noticeable decrease in its adsorption capability over time. The findings revealed that the synthesized composite adsorbents of NiAl-Sp and ZnAl-Sp exhibit high efficacy in the adsorption of malachite green from effluent.</p></div>\",\"PeriodicalId\":73541,\"journal\":{\"name\":\"JCIS open\",\"volume\":\"15 \",\"pages\":\"Article 100118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666934X24000187/pdfft?md5=4428bec74e6a77c1e24c34aae21d7410&pid=1-s2.0-S2666934X24000187-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCIS open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666934X24000187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X24000187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Selective adsorption of cationic dyes by layered double hydroxide with assist algae (Spirulina platensis) to enrich functional groups
The present study involved the preparation, characterization, and evaluation of layered double hydroxide (LDH) with the assistance of the algae Spirulina platensis (NiAl-Sp and ZnAl-Sp). These materials were investigated for their potential for selective adsorption of cationic dyes, including rhodamine B, malachite green, and methylene blue. The adsorbents exhibit a significant level of selectivity in their capacity to adsorb malachite green in comparison to other cationic dyes. The next parameter of adsorption was evaluated in malachite green as the selective adsorption of cationic dyes. Based on the Langmuir isotherm model, the calculated maximum adsorption capacities of NiAl-Sp and ZnAl-Sp for malachite green were determined to be 478.190 mg/g (pH = 4, 50 °C for 30 min) and 123.457 mg/g (pH = 4, 30 °C for 30 min), respectively. The main processes of adsorption encompassed not only electrostatic interactions but also hydrogen bonding and π-π interactions involving the dye and the amino, hydroxyl, and carboxyl functional groups derived from Spirulina platensis. Spirulina platensis enhances the functional group of LDH. The findings of this study indicate that the NiAl-Sp and ZnAl-Sp composite demonstrated stability as a sorbent for the adsorption of malachite green. Furthermore, it was observed that this composite could be utilized for up to four adsorption cycles, but there was a noticeable decrease in its adsorption capability over time. The findings revealed that the synthesized composite adsorbents of NiAl-Sp and ZnAl-Sp exhibit high efficacy in the adsorption of malachite green from effluent.