用列和行生成法解决有转移的人群运输问题

IF 6.7 2区 管理学 Q1 MANAGEMENT Omega-international Journal of Management Science Pub Date : 2024-06-20 DOI:10.1016/j.omega.2024.103134
Patrick Stokkink , Jean-François Cordeau , Nikolas Geroliminis
{"title":"用列和行生成法解决有转移的人群运输问题","authors":"Patrick Stokkink ,&nbsp;Jean-François Cordeau ,&nbsp;Nikolas Geroliminis","doi":"10.1016/j.omega.2024.103134","DOIUrl":null,"url":null,"abstract":"<div><p>Crowd-shipping is a last-mile delivery concept in which commuters pick up and deliver parcels on their pre-existing paths. In urban areas, crowd-shipping circumvents problems that traditional last-mile delivery systems suffer from, such as road congestion and lack of parking spaces, especially if more sustainable modes of transport are utilized, like bikes or e-bikes. Using transfers between crowd-shippers allows for expanding the service area and improving the overall performance. However, as this requires synchronization over space and time, it makes the problem more complex. In this work, we develop a model that can encompass fully heterogeneous crowd-shippers and parcels. Thereby, it allows for both direct time-synchronized transfers as well as intermediate storage at designated parcel lockers. We design a column generation algorithm to solve large-scale realistic instances to optimality. We extend the problem to allow crowd-shippers to carry multiple parcels at the same time and for this, we extend the algorithm to simultaneous column and row generation. We evaluate the performance of our algorithm as well as the potential of crowd-shipping with transfers on a realistic case study of a bike-based crowd-shipping system in Washington DC. Our methods solve realistic instances with 1000 crowd-shippers and 1000 parcels within minutes. The results show that a gain in revenue and service level of 30% can be obtained by allowing transfers. By letting part of the population of crowd-shippers carry two or three parcels at the same time, the revenue and service level can be further increased by 30 to 50%. Maximum locker capacities are shown to be reasonable and are the highest in areas where there is a large gap between the moment when parcels are dropped off and when they are picked up from parcel points, which are mainly in the city center.</p></div>","PeriodicalId":19529,"journal":{"name":"Omega-international Journal of Management Science","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0305048324001002/pdfft?md5=a1247a808436b66a2d798de652a9721a&pid=1-s2.0-S0305048324001002-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A column and row generation approach to the crowd-shipping problem with transfers\",\"authors\":\"Patrick Stokkink ,&nbsp;Jean-François Cordeau ,&nbsp;Nikolas Geroliminis\",\"doi\":\"10.1016/j.omega.2024.103134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Crowd-shipping is a last-mile delivery concept in which commuters pick up and deliver parcels on their pre-existing paths. In urban areas, crowd-shipping circumvents problems that traditional last-mile delivery systems suffer from, such as road congestion and lack of parking spaces, especially if more sustainable modes of transport are utilized, like bikes or e-bikes. Using transfers between crowd-shippers allows for expanding the service area and improving the overall performance. However, as this requires synchronization over space and time, it makes the problem more complex. In this work, we develop a model that can encompass fully heterogeneous crowd-shippers and parcels. Thereby, it allows for both direct time-synchronized transfers as well as intermediate storage at designated parcel lockers. We design a column generation algorithm to solve large-scale realistic instances to optimality. We extend the problem to allow crowd-shippers to carry multiple parcels at the same time and for this, we extend the algorithm to simultaneous column and row generation. We evaluate the performance of our algorithm as well as the potential of crowd-shipping with transfers on a realistic case study of a bike-based crowd-shipping system in Washington DC. Our methods solve realistic instances with 1000 crowd-shippers and 1000 parcels within minutes. The results show that a gain in revenue and service level of 30% can be obtained by allowing transfers. By letting part of the population of crowd-shippers carry two or three parcels at the same time, the revenue and service level can be further increased by 30 to 50%. Maximum locker capacities are shown to be reasonable and are the highest in areas where there is a large gap between the moment when parcels are dropped off and when they are picked up from parcel points, which are mainly in the city center.</p></div>\",\"PeriodicalId\":19529,\"journal\":{\"name\":\"Omega-international Journal of Management Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0305048324001002/pdfft?md5=a1247a808436b66a2d798de652a9721a&pid=1-s2.0-S0305048324001002-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Omega-international Journal of Management Science\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305048324001002\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Omega-international Journal of Management Science","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305048324001002","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

摘要

人群托运是一种最后一英里递送概念,通勤者在他们预先存在的路径上取送包裹。在城市地区,众包可以规避传统最后一英里递送系统所面临的问题,如道路拥堵和缺乏停车位,尤其是在使用自行车或电动自行车等更可持续的交通工具时。利用众包车之间的换乘可以扩大服务范围,提高整体性能。然而,由于这需要空间和时间上的同步,因此使问题变得更加复杂。在这项工作中,我们开发了一个模型,可以涵盖完全异构的人群运输者和包裹。因此,它既允许直接的时间同步传输,也允许在指定的包裹储藏室进行中间存储。我们设计了一种列生成算法,用于求解大规模现实实例的最优性。我们对问题进行了扩展,允许人群托运人同时携带多个包裹,为此,我们将算法扩展为同时生成列和行。我们在华盛顿特区一个基于自行车的人群运输系统的现实案例研究中,评估了我们算法的性能以及人群运输转运的潜力。我们的方法能在几分钟内解决 1000 名人群运输者和 1000 个包裹的实际问题。结果表明,允许转运可使收入和服务水平提高 30%。通过让部分人群同时携带两个或三个包裹,收入和服务水平可进一步提高 30%至 50%。储物柜的最大容量是合理的,并且在包裹投放点与包裹提取点之间存在较大空隙的地区,储物柜的最大容量是最高的,这些地区主要位于市中心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A column and row generation approach to the crowd-shipping problem with transfers

Crowd-shipping is a last-mile delivery concept in which commuters pick up and deliver parcels on their pre-existing paths. In urban areas, crowd-shipping circumvents problems that traditional last-mile delivery systems suffer from, such as road congestion and lack of parking spaces, especially if more sustainable modes of transport are utilized, like bikes or e-bikes. Using transfers between crowd-shippers allows for expanding the service area and improving the overall performance. However, as this requires synchronization over space and time, it makes the problem more complex. In this work, we develop a model that can encompass fully heterogeneous crowd-shippers and parcels. Thereby, it allows for both direct time-synchronized transfers as well as intermediate storage at designated parcel lockers. We design a column generation algorithm to solve large-scale realistic instances to optimality. We extend the problem to allow crowd-shippers to carry multiple parcels at the same time and for this, we extend the algorithm to simultaneous column and row generation. We evaluate the performance of our algorithm as well as the potential of crowd-shipping with transfers on a realistic case study of a bike-based crowd-shipping system in Washington DC. Our methods solve realistic instances with 1000 crowd-shippers and 1000 parcels within minutes. The results show that a gain in revenue and service level of 30% can be obtained by allowing transfers. By letting part of the population of crowd-shippers carry two or three parcels at the same time, the revenue and service level can be further increased by 30 to 50%. Maximum locker capacities are shown to be reasonable and are the highest in areas where there is a large gap between the moment when parcels are dropped off and when they are picked up from parcel points, which are mainly in the city center.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Omega-international Journal of Management Science
Omega-international Journal of Management Science 管理科学-运筹学与管理科学
CiteScore
13.80
自引率
11.60%
发文量
130
审稿时长
56 days
期刊介绍: Omega reports on developments in management, including the latest research results and applications. Original contributions and review articles describe the state of the art in specific fields or functions of management, while there are shorter critical assessments of particular management techniques. Other features of the journal are the "Memoranda" section for short communications and "Feedback", a correspondence column. Omega is both stimulating reading and an important source for practising managers, specialists in management services, operational research workers and management scientists, management consultants, academics, students and research personnel throughout the world. The material published is of high quality and relevance, written in a manner which makes it accessible to all of this wide-ranging readership. Preference will be given to papers with implications to the practice of management. Submissions of purely theoretical papers are discouraged. The review of material for publication in the journal reflects this aim.
期刊最新文献
A column and row generation approach to the crowd-shipping problem with transfers Heterogeneous joint vaccine allocation and quarantine restriction planning under uncertainty: The COVID-19 pandemic Customer-driven value creation in the digital economy: Determining the role of customer firms’ digital transformation on supplier performance in China Reduced food waste through inventory control despite throwing out food before expiration: Online vs. offline retail Support Vector Frontiers with kernel splines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1