通过退火在石墨烯基电极上形成更多更尖锐的传感突起

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL FlatChem Pub Date : 2024-06-26 DOI:10.1016/j.flatc.2024.100707
Yijing Y. Stehle , Hayden Qualls , Rebecca Cortez , Sang Duang , Ivan Vlassiouk
{"title":"通过退火在石墨烯基电极上形成更多更尖锐的传感突起","authors":"Yijing Y. Stehle ,&nbsp;Hayden Qualls ,&nbsp;Rebecca Cortez ,&nbsp;Sang Duang ,&nbsp;Ivan Vlassiouk","doi":"10.1016/j.flatc.2024.100707","DOIUrl":null,"url":null,"abstract":"<div><p>A better understanding of the microstructure, physicochemical properties, and sensing behavior of an electrode is critical in developing quick, high sensitivity, and robust electrochemical sensors. In this study, a single electrode was fabricated with self-prepared graphene ink through a drop-cast process followed with a subsequent annealing treatment. The graphene ink-based electrodes were characterized through AFM, contact angle, FTIR, impedance spectra, Raman, and SEM to understand annealing treatment effects. The dynamic response of the electrode to humidity, and vapors of ethanol, propanol, or acetone was measured using a four-point probe station in a closed chamber. The annealing treatment increased the conductivity of the electrode and improved its sensing performance by forming more and sharper protrusions on the electrode surface. These unique surface protrusions suggest that the annealed graphene ink-based electrodes hold great potential in developing high-performance electrochemical sensors.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forming more and sharper sensing protrusions on graphene-based electrodes through annealing\",\"authors\":\"Yijing Y. Stehle ,&nbsp;Hayden Qualls ,&nbsp;Rebecca Cortez ,&nbsp;Sang Duang ,&nbsp;Ivan Vlassiouk\",\"doi\":\"10.1016/j.flatc.2024.100707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A better understanding of the microstructure, physicochemical properties, and sensing behavior of an electrode is critical in developing quick, high sensitivity, and robust electrochemical sensors. In this study, a single electrode was fabricated with self-prepared graphene ink through a drop-cast process followed with a subsequent annealing treatment. The graphene ink-based electrodes were characterized through AFM, contact angle, FTIR, impedance spectra, Raman, and SEM to understand annealing treatment effects. The dynamic response of the electrode to humidity, and vapors of ethanol, propanol, or acetone was measured using a four-point probe station in a closed chamber. The annealing treatment increased the conductivity of the electrode and improved its sensing performance by forming more and sharper protrusions on the electrode surface. These unique surface protrusions suggest that the annealed graphene ink-based electrodes hold great potential in developing high-performance electrochemical sensors.</p></div>\",\"PeriodicalId\":316,\"journal\":{\"name\":\"FlatChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FlatChem\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452262724001016\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724001016","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

更好地了解电极的微观结构、物理化学特性和传感行为对于开发快速、高灵敏度和坚固耐用的电化学传感器至关重要。在本研究中,通过滴铸工艺和随后的退火处理,用自行制备的石墨烯墨水制造了单个电极。研究人员通过原子力显微镜、接触角、傅立叶变换红外光谱、阻抗光谱、拉曼光谱和扫描电镜对基于石墨烯墨水的电极进行了表征,以了解退火处理的效果。在密闭室中使用四点探针站测量了电极对湿度以及乙醇、丙醇或丙酮蒸汽的动态响应。退火处理增加了电极的导电性,并通过在电极表面形成更多更尖锐的突起改善了其传感性能。这些独特的表面突起表明,退火处理后的石墨烯墨水电极在开发高性能电化学传感器方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forming more and sharper sensing protrusions on graphene-based electrodes through annealing

A better understanding of the microstructure, physicochemical properties, and sensing behavior of an electrode is critical in developing quick, high sensitivity, and robust electrochemical sensors. In this study, a single electrode was fabricated with self-prepared graphene ink through a drop-cast process followed with a subsequent annealing treatment. The graphene ink-based electrodes were characterized through AFM, contact angle, FTIR, impedance spectra, Raman, and SEM to understand annealing treatment effects. The dynamic response of the electrode to humidity, and vapors of ethanol, propanol, or acetone was measured using a four-point probe station in a closed chamber. The annealing treatment increased the conductivity of the electrode and improved its sensing performance by forming more and sharper protrusions on the electrode surface. These unique surface protrusions suggest that the annealed graphene ink-based electrodes hold great potential in developing high-performance electrochemical sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
期刊最新文献
Battery-free flexible wireless temperature sensing for food storage Simultaneous engineering of the conductivity and work function of biphenylene via fluorine adsorption Optimizing doping thresholds for enhanced scintillation in 2D hybrid organic–inorganic perovskites Selective mass transport mediated by two-dimensional confined water: A comprehensive review Forming more and sharper sensing protrusions on graphene-based electrodes through annealing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1