揭示氧空位消除带来的 VO2 近红外调制性能提升

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-06-24 DOI:10.1016/j.solmat.2024.113007
Yibei Xue , Lei Miao , Peng Song , Takuya Hasegawa , Ayahisa Okawa , Ryo Maezono , Tohru Sekino , Shu Yin
{"title":"揭示氧空位消除带来的 VO2 近红外调制性能提升","authors":"Yibei Xue ,&nbsp;Lei Miao ,&nbsp;Peng Song ,&nbsp;Takuya Hasegawa ,&nbsp;Ayahisa Okawa ,&nbsp;Ryo Maezono ,&nbsp;Tohru Sekino ,&nbsp;Shu Yin","doi":"10.1016/j.solmat.2024.113007","DOIUrl":null,"url":null,"abstract":"<div><p>Vanadium dioxide has emerged as a promising material for smart windows owing to the temperature-responsive variable near-infrared (NIR) transmittance. Yet, the poor NIR modulation ability challenges its efficiency in thermal management. In this study, by meticulously controlling the oxygen vacancy content at a low level, VO<sub>2</sub> nanoparticles with excellent NIR modulation performance are achieved. Oxygen vacancy (V<sub>O</sub>) defects elimination leads to a remarkable decrease of reflectance in the monoclinic (M) phase, dramatically enhancing the near-infrared contrast of VO<sub>2</sub> by 154 %. Density functional theory (DFT) calculations reveal that V<sub>O</sub> elimination favors low refractive index in the NIR region. The optimized experiment is carried out to prepare VO<sub>2</sub> nanoparticles with low defects and high crystallinity. It shows the best NIR transmittance contrast at 1500 nm (<em>ΔT</em><sub><em>1500 nm</em></sub>) of 24.4 %, simultaneously keeping a high luminous transmittance (<em>T</em><sub><em>lum</em></sub>) of 79.7 %. This study is believed to provide valuable guidance for the current defect and thermochromic performance study of VO<sub>2</sub>.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927024824003192/pdfft?md5=fe7c9a1314db7df9fe663756d2feec39&pid=1-s2.0-S0927024824003192-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unveiling the NIR modulation performance enhancement of VO2 endowed by oxygen vacancy elimination\",\"authors\":\"Yibei Xue ,&nbsp;Lei Miao ,&nbsp;Peng Song ,&nbsp;Takuya Hasegawa ,&nbsp;Ayahisa Okawa ,&nbsp;Ryo Maezono ,&nbsp;Tohru Sekino ,&nbsp;Shu Yin\",\"doi\":\"10.1016/j.solmat.2024.113007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Vanadium dioxide has emerged as a promising material for smart windows owing to the temperature-responsive variable near-infrared (NIR) transmittance. Yet, the poor NIR modulation ability challenges its efficiency in thermal management. In this study, by meticulously controlling the oxygen vacancy content at a low level, VO<sub>2</sub> nanoparticles with excellent NIR modulation performance are achieved. Oxygen vacancy (V<sub>O</sub>) defects elimination leads to a remarkable decrease of reflectance in the monoclinic (M) phase, dramatically enhancing the near-infrared contrast of VO<sub>2</sub> by 154 %. Density functional theory (DFT) calculations reveal that V<sub>O</sub> elimination favors low refractive index in the NIR region. The optimized experiment is carried out to prepare VO<sub>2</sub> nanoparticles with low defects and high crystallinity. It shows the best NIR transmittance contrast at 1500 nm (<em>ΔT</em><sub><em>1500 nm</em></sub>) of 24.4 %, simultaneously keeping a high luminous transmittance (<em>T</em><sub><em>lum</em></sub>) of 79.7 %. This study is believed to provide valuable guidance for the current defect and thermochromic performance study of VO<sub>2</sub>.</p></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0927024824003192/pdfft?md5=fe7c9a1314db7df9fe663756d2feec39&pid=1-s2.0-S0927024824003192-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024824003192\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824003192","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

二氧化钒具有温度响应可变的近红外(NIR)透射率,因此已成为一种很有前途的智能窗户材料。然而,由于近红外调制能力较差,它在热管理方面的效率受到了挑战。在本研究中,通过细致地将氧空位含量控制在较低水平,实现了具有优异近红外调制性能的 VO2 纳米粒子。氧空位(VO)缺陷的消除导致单斜(M)相的反射率显著下降,使 VO2 的近红外对比度大幅提高了 154%。密度泛函理论(DFT)计算显示,消除氧杂质有利于近红外区域的低折射率。通过优化实验,制备出了低缺陷、高结晶度的 VO2 纳米粒子。它在 1500 nm 波长处显示出 24.4 % 的最佳近红外透射率对比(ΔT1500 nm),同时保持了 79.7 % 的高透光率(Tlum)。这项研究相信能为当前的 VO2 缺陷和热致变色性能研究提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unveiling the NIR modulation performance enhancement of VO2 endowed by oxygen vacancy elimination

Vanadium dioxide has emerged as a promising material for smart windows owing to the temperature-responsive variable near-infrared (NIR) transmittance. Yet, the poor NIR modulation ability challenges its efficiency in thermal management. In this study, by meticulously controlling the oxygen vacancy content at a low level, VO2 nanoparticles with excellent NIR modulation performance are achieved. Oxygen vacancy (VO) defects elimination leads to a remarkable decrease of reflectance in the monoclinic (M) phase, dramatically enhancing the near-infrared contrast of VO2 by 154 %. Density functional theory (DFT) calculations reveal that VO elimination favors low refractive index in the NIR region. The optimized experiment is carried out to prepare VO2 nanoparticles with low defects and high crystallinity. It shows the best NIR transmittance contrast at 1500 nm (ΔT1500 nm) of 24.4 %, simultaneously keeping a high luminous transmittance (Tlum) of 79.7 %. This study is believed to provide valuable guidance for the current defect and thermochromic performance study of VO2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Studies on B-doping during low-temperature growth of nc-Ge thin films via PECVD to mitigate unwanted conduction characteristics from the post-deposition oxygen absorption Cold atmospheric pressure plasma-assisted aerosol deposition of multi-colored dual band electrochromic VOxCyNz thin films Improved performance of InGaN/GaN multiple-quantum-wells photovoltaic devices on free-standing GaN substrates with TMAH treatment Down-shifting in Ce3+- Tb3+ co-doped phosphate glasses for solar cells application Preparation and thermal properties of latent functional thermal fluid based on size-controllable phase change nanocapsules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1