{"title":"20 纳米技术节点下栅极堆叠反 T 型结少 FET 的工艺和几何参数作用","authors":"Sameeksha Munjal, Neelam Rup Prakash, Jasbir Kaur, Komal","doi":"10.1016/j.micrna.2024.207924","DOIUrl":null,"url":null,"abstract":"<div><p>In the present era, FET devices are seamlessly integrated with complex circuits that can be used to realize chips capable of operating at a significantly higher speed. These designed devices can meet the requisite of circuits used in designing mobile phones, tablets and laptops, thereby enhancing the overall performance. The present work focuses on designing of gate stack inverted-T junctionless FET at 20 nm technology node. Both static and low frequency characteristics of device such as threshold voltage (<span><math><mrow><msub><mi>V</mi><mrow><mi>T</mi><mi>h</mi></mrow></msub></mrow></math></span>), transconductance (<span><math><mrow><msub><mi>g</mi><mi>m</mi></msub></mrow></math></span>), on (<span><math><mrow><msub><mi>I</mi><mrow><mi>O</mi><mi>N</mi></mrow></msub></mrow></math></span>) & off (<span><math><mrow><msub><mi>I</mi><mrow><mi>O</mi><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span>) state currents, as well as its high-frequency characteristics like total gate capacitance (<span><math><mrow><msub><mi>C</mi><mrow><mi>g</mi><mi>g</mi></mrow></msub></mrow></math></span>), cut-off frequency (<span><math><mrow><msub><mi>f</mi><mi>T</mi></msub></mrow></math></span>), maximum oscillation frequency <span><math><mrow><mo>(</mo><msub><mi>f</mi><mi>max</mi></msub><mo>)</mo></mrow></math></span> and gain bandwidth product (GBW) are methodically demonstrated with alterations in the device process and geometrical variations. The parameters such as height of fin, width of fin and work function are varied to study their impact. The SS, DIBL, <span><math><mrow><msub><mi>I</mi><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>O</mi><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span> (current switching ratio) and <span><math><mrow><msub><mrow><mspace></mspace><mi>V</mi></mrow><mrow><mi>T</mi><mi>h</mi></mrow></msub></mrow></math></span>, for 20 nm gate length are observed as 67.94 mV/dec, 34.32 mV/V, 10<sup>8</sup>, 0.32 V, respectively. The <span><math><mrow><msub><mi>f</mi><mi>max</mi></msub></mrow></math></span> is determined to be in the THz range and has early voltage of approximately 6.12V. Additionally, the effect of temperature is also studied by varying it in the range of 250 K–450 K. Analysis and virtual modelling of device is carried out using Visual TCAD. In addition, p-channel transistor is designed along with the n-channel configuration to investigate the device performance for CMOS based circuits. The noise margin and average delay of the inverter circuit are observed to be 0.37 V and 36.7 ps respectively.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"193 ","pages":"Article 207924"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of process and geometrical parameters of gate stack Inverted-T shape junction less FET at 20 nm technology node\",\"authors\":\"Sameeksha Munjal, Neelam Rup Prakash, Jasbir Kaur, Komal\",\"doi\":\"10.1016/j.micrna.2024.207924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present era, FET devices are seamlessly integrated with complex circuits that can be used to realize chips capable of operating at a significantly higher speed. These designed devices can meet the requisite of circuits used in designing mobile phones, tablets and laptops, thereby enhancing the overall performance. The present work focuses on designing of gate stack inverted-T junctionless FET at 20 nm technology node. Both static and low frequency characteristics of device such as threshold voltage (<span><math><mrow><msub><mi>V</mi><mrow><mi>T</mi><mi>h</mi></mrow></msub></mrow></math></span>), transconductance (<span><math><mrow><msub><mi>g</mi><mi>m</mi></msub></mrow></math></span>), on (<span><math><mrow><msub><mi>I</mi><mrow><mi>O</mi><mi>N</mi></mrow></msub></mrow></math></span>) & off (<span><math><mrow><msub><mi>I</mi><mrow><mi>O</mi><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span>) state currents, as well as its high-frequency characteristics like total gate capacitance (<span><math><mrow><msub><mi>C</mi><mrow><mi>g</mi><mi>g</mi></mrow></msub></mrow></math></span>), cut-off frequency (<span><math><mrow><msub><mi>f</mi><mi>T</mi></msub></mrow></math></span>), maximum oscillation frequency <span><math><mrow><mo>(</mo><msub><mi>f</mi><mi>max</mi></msub><mo>)</mo></mrow></math></span> and gain bandwidth product (GBW) are methodically demonstrated with alterations in the device process and geometrical variations. The parameters such as height of fin, width of fin and work function are varied to study their impact. The SS, DIBL, <span><math><mrow><msub><mi>I</mi><mrow><mi>O</mi><mi>N</mi></mrow></msub><mo>/</mo><msub><mi>I</mi><mrow><mi>O</mi><mi>F</mi><mi>F</mi></mrow></msub></mrow></math></span> (current switching ratio) and <span><math><mrow><msub><mrow><mspace></mspace><mi>V</mi></mrow><mrow><mi>T</mi><mi>h</mi></mrow></msub></mrow></math></span>, for 20 nm gate length are observed as 67.94 mV/dec, 34.32 mV/V, 10<sup>8</sup>, 0.32 V, respectively. The <span><math><mrow><msub><mi>f</mi><mi>max</mi></msub></mrow></math></span> is determined to be in the THz range and has early voltage of approximately 6.12V. Additionally, the effect of temperature is also studied by varying it in the range of 250 K–450 K. Analysis and virtual modelling of device is carried out using Visual TCAD. In addition, p-channel transistor is designed along with the n-channel configuration to investigate the device performance for CMOS based circuits. The noise margin and average delay of the inverter circuit are observed to be 0.37 V and 36.7 ps respectively.</p></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"193 \",\"pages\":\"Article 207924\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012324001730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
摘要
在当今时代,场效应晶体管器件与复杂电路无缝集成,可用于实现运行速度更高的芯片。这些设计的器件可以满足设计手机、平板电脑和笔记本电脑时对电路的要求,从而提高整体性能。本研究的重点是在 20 纳米技术节点上设计栅极堆叠倒 T 无结 FET。通过改变器件工艺和几何变化,有条不紊地展示了器件的静态和低频特性,如阈值电压(VTh)、跨导(gm)、导通(ION)和关断(IOFF)状态电流,以及高频特性,如总栅极电容(Cgg)、截止频率(fT)、最大振荡频率(fmax)和增益带宽积(GBW)。通过改变鳍片高度、鳍片宽度和功函数等参数来研究它们的影响。对于 20 nm 栅极长度,观察到的 SS、DIBL、ION/IOFF(电流开关比)和 VTh 分别为 67.94 mV/dec、34.32 mV/V、108 和 0.32 V。fmax 被确定在太赫兹范围内,早期电压约为 6.12V。此外,还通过在 250 K-450 K 范围内改变温度研究了温度的影响,并使用 Visual TCAD 对器件进行了分析和虚拟建模。此外,还设计了 p 沟道晶体管和 n 沟道配置,以研究基于 CMOS 电路的器件性能。逆变器电路的噪声裕度和平均延迟分别为 0.37 V 和 36.7 ps。
The role of process and geometrical parameters of gate stack Inverted-T shape junction less FET at 20 nm technology node
In the present era, FET devices are seamlessly integrated with complex circuits that can be used to realize chips capable of operating at a significantly higher speed. These designed devices can meet the requisite of circuits used in designing mobile phones, tablets and laptops, thereby enhancing the overall performance. The present work focuses on designing of gate stack inverted-T junctionless FET at 20 nm technology node. Both static and low frequency characteristics of device such as threshold voltage (), transconductance (), on () & off () state currents, as well as its high-frequency characteristics like total gate capacitance (), cut-off frequency (), maximum oscillation frequency and gain bandwidth product (GBW) are methodically demonstrated with alterations in the device process and geometrical variations. The parameters such as height of fin, width of fin and work function are varied to study their impact. The SS, DIBL, (current switching ratio) and , for 20 nm gate length are observed as 67.94 mV/dec, 34.32 mV/V, 108, 0.32 V, respectively. The is determined to be in the THz range and has early voltage of approximately 6.12V. Additionally, the effect of temperature is also studied by varying it in the range of 250 K–450 K. Analysis and virtual modelling of device is carried out using Visual TCAD. In addition, p-channel transistor is designed along with the n-channel configuration to investigate the device performance for CMOS based circuits. The noise margin and average delay of the inverter circuit are observed to be 0.37 V and 36.7 ps respectively.