Derya Erbas, Kerem Mertoglu, Ilknur Eskimez, Mehmet Polat, Mehmet A. Koyuncu, Melekber S. Durul, Ibrahim Bulduk, Barış Kaki, Tuba Esatbeyoglu
{"title":"采前水杨酸和草酸可减少黑莓(Chester)果实在冷藏期间的生物活性和品质损失","authors":"Derya Erbas, Kerem Mertoglu, Ilknur Eskimez, Mehmet Polat, Mehmet A. Koyuncu, Melekber S. Durul, Ibrahim Bulduk, Barış Kaki, Tuba Esatbeyoglu","doi":"10.1155/2024/4286507","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In this study, we investigated the effects of preharvest oxalic acid (2.5 mM (OA1) and 5 mM (OA2)) and salicylic acid (0.5 mM (SA1) and 1 mM (SA2)) treatments on the storage and quality of blackberry cv. Chester. We applied salicylic acid and oxalic acid to the plants seven and fourteen days before harvest and recorded the physiological, physicochemical, and external appearance characteristics of the fruits during the cold storage period (nine days). The results showed that the treatments decreased ethylene production by 29.5% (SA1) at harvest and by 28.5% (SA2) at the end of the storage period. In addition, the respiration rate was reduced between 13.0% (OA2) and 28.0% (SA2) compared to the control. Although fruit weigh loss increased as storage extended, the highest losses were observed in control with 1.35%. Titratable acidity decreased from harvest (0.46%) to the end of storage (0.39%) in the control, whereas it ranged from 0.52% (SA1) to 0.62% (OA1) in the treatment groups. Malic acid and syringic acid were the dominant organic acid and phenolic, respectively, and although their content decreased continuously in the control group, no loss was observed in the treated groups after the sixth day. These effects were positively reflected in the external appearance of the fruits, total phenolic content, total flavonoid content, and properties related to antioxidant activity. As a result of the cumulative evaluation of all parameters, it can be suggested that Chester fruits can be stored for nine days in marketable quality with the SA2 applications. Among oxalic acid concentrations, 2.5 mM can be recommended for phytochemical accumulation at harvest and short-term storage of three days.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4286507","citationCount":"0","resultStr":"{\"title\":\"Preharvest Salicylic Acid and Oxalic Acid Decrease Bioactive and Quality Loss in Blackberry (cv. Chester) Fruits during Cold Storage\",\"authors\":\"Derya Erbas, Kerem Mertoglu, Ilknur Eskimez, Mehmet Polat, Mehmet A. Koyuncu, Melekber S. Durul, Ibrahim Bulduk, Barış Kaki, Tuba Esatbeyoglu\",\"doi\":\"10.1155/2024/4286507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In this study, we investigated the effects of preharvest oxalic acid (2.5 mM (OA1) and 5 mM (OA2)) and salicylic acid (0.5 mM (SA1) and 1 mM (SA2)) treatments on the storage and quality of blackberry cv. Chester. We applied salicylic acid and oxalic acid to the plants seven and fourteen days before harvest and recorded the physiological, physicochemical, and external appearance characteristics of the fruits during the cold storage period (nine days). The results showed that the treatments decreased ethylene production by 29.5% (SA1) at harvest and by 28.5% (SA2) at the end of the storage period. In addition, the respiration rate was reduced between 13.0% (OA2) and 28.0% (SA2) compared to the control. Although fruit weigh loss increased as storage extended, the highest losses were observed in control with 1.35%. Titratable acidity decreased from harvest (0.46%) to the end of storage (0.39%) in the control, whereas it ranged from 0.52% (SA1) to 0.62% (OA1) in the treatment groups. Malic acid and syringic acid were the dominant organic acid and phenolic, respectively, and although their content decreased continuously in the control group, no loss was observed in the treated groups after the sixth day. These effects were positively reflected in the external appearance of the fruits, total phenolic content, total flavonoid content, and properties related to antioxidant activity. As a result of the cumulative evaluation of all parameters, it can be suggested that Chester fruits can be stored for nine days in marketable quality with the SA2 applications. Among oxalic acid concentrations, 2.5 mM can be recommended for phytochemical accumulation at harvest and short-term storage of three days.</p>\\n </div>\",\"PeriodicalId\":15802,\"journal\":{\"name\":\"Journal of Food Biochemistry\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/4286507\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/4286507\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/4286507","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究中,我们调查了采收前草酸(2.5 mM (OA1) 和 5 mM (OA2))和水杨酸(0.5 mM (SA1) 和 1 mM (SA2))处理对黑莓品种切斯特(Chester.切斯特我们在采收前七天和十四天对植株施用水杨酸和草酸,并记录了果实在冷藏期间(九天)的生理、理化和外观特征。结果表明,这些处理在收获时使乙烯产量减少了 29.5%(SA1),在贮藏期结束时使乙烯产量减少了 28.5%(SA2)。此外,与对照相比,呼吸速率降低了 13.0%(OA2)和 28.0%(SA2)。虽然果实重量损失随着贮藏时间的延长而增加,但对照组的损失率最高,为 1.35%。对照组的可滴定酸度从采收(0.46%)到贮藏结束(0.39%)一直在下降,而处理组的可滴定酸度则从 0.52%(SA1)到 0.62%(OA1)不等。苹果酸和丁香酸分别是最主要的有机酸和酚类物质,虽然它们的含量在对照组中持续下降,但在处理组中,第六天后没有观察到损失。这些效果在果实的外观、总酚含量、总黄酮含量以及与抗氧化活性相关的特性上都得到了积极的反映。对所有参数进行累积评估的结果表明,使用 SA2 的切斯特果实可贮藏 9 天,其品质可在市场上销售。在草酸浓度中,建议使用 2.5 毫摩尔的草酸浓度,以便在收获时积累植物化学物质,并短期储存 3 天。
Preharvest Salicylic Acid and Oxalic Acid Decrease Bioactive and Quality Loss in Blackberry (cv. Chester) Fruits during Cold Storage
In this study, we investigated the effects of preharvest oxalic acid (2.5 mM (OA1) and 5 mM (OA2)) and salicylic acid (0.5 mM (SA1) and 1 mM (SA2)) treatments on the storage and quality of blackberry cv. Chester. We applied salicylic acid and oxalic acid to the plants seven and fourteen days before harvest and recorded the physiological, physicochemical, and external appearance characteristics of the fruits during the cold storage period (nine days). The results showed that the treatments decreased ethylene production by 29.5% (SA1) at harvest and by 28.5% (SA2) at the end of the storage period. In addition, the respiration rate was reduced between 13.0% (OA2) and 28.0% (SA2) compared to the control. Although fruit weigh loss increased as storage extended, the highest losses were observed in control with 1.35%. Titratable acidity decreased from harvest (0.46%) to the end of storage (0.39%) in the control, whereas it ranged from 0.52% (SA1) to 0.62% (OA1) in the treatment groups. Malic acid and syringic acid were the dominant organic acid and phenolic, respectively, and although their content decreased continuously in the control group, no loss was observed in the treated groups after the sixth day. These effects were positively reflected in the external appearance of the fruits, total phenolic content, total flavonoid content, and properties related to antioxidant activity. As a result of the cumulative evaluation of all parameters, it can be suggested that Chester fruits can be stored for nine days in marketable quality with the SA2 applications. Among oxalic acid concentrations, 2.5 mM can be recommended for phytochemical accumulation at harvest and short-term storage of three days.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality