Darren H. Touchell, Nathan Lynch, Reza Shekasteband, Allison N. Dickey, Mari C. Chinn, Matthew Whitfield, Thomas G. Ranney
{"title":"新育成的三倍体大芒草杂交种的生物量产量、繁殖力、成分分析和遗传多样性","authors":"Darren H. Touchell, Nathan Lynch, Reza Shekasteband, Allison N. Dickey, Mari C. Chinn, Matthew Whitfield, Thomas G. Ranney","doi":"10.1111/gcbb.13174","DOIUrl":null,"url":null,"abstract":"<p><i>Miscanthus</i> ×<i>giganteus</i> (giant miscanthus), first found as a naturally occurring hybrid, has shown promise as a bioenergy/biomass crop throughout much of the temperate world. This allotriploid (2<i>n</i> = 3<i>x</i> = 57) hybrid resulted from a cross between tetraploid <i>Miscanthus sacchariflorus</i> (2<i>n</i> = 4<i>x</i> = 76) and diploid <i>Miscanthus sinensis</i> (2<i>n</i> = 2<i>x</i> = 38) and is particularly desirable due to its low fertility that minimizes reseeding and potential invasiveness. However, there is limited genetic diversity in commonly grown cultivars of triploid <i>M.</i> ×<i>giganteus</i> and breeding and development efforts to improve and domesticate this crop have been minimal. Here, we report on newly developed <i>M.</i> ×<i>giganteus</i> hybrids compared with the industry standard <i>M.</i> ×<i>giganteus</i> '1993-1780'. Dry biomass yields of new hybrids ranged from 19.5 to 32.4 Mg/ha/year for the fourth growing season, compared with 21.0 Mg/ha/year for <i>M.</i> ×<i>giganteus</i> '1993-1780'. Plant reproductive fertility remained low for all accessions with overall fertility [(seed set × seed germination)/100] ranging from 0.3% to 4.5% for new hybrids compared to 0.4% for <i>M.</i> ×<i>giganteus</i> '1993-1780'. Culm density and height varied among accessions and were positively correlated with increased biomass. Based on compositional analyses, theoretical ethanol yields ranged from 9, 740 to 16,278 L/ha/year for new hybrids compared to 10,406 L/ha/year for <i>M.</i> ×<i>giganteus</i> '1993-1780'. Relative feed value indices were low overall and ranged between 66.0 and 72.8 for new hybrids compared to <i>M.</i> ×<i>giganteus</i> '1993-1780' with 71.3. The genetic diversity of new hybrids, compared with existing cultivars, was characterized using whole genome sequences. Based on pair-wise distances, cluster analysis clearly showed increased diversity of new hybrids compared with earlier selections. These results document new triploid hybrids of <i>M.</i> ×<i>giganteus</i> with enhanced biomass and theoretical ethanol yields in combination with broader genetic diversity and lowreproductive fertility.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 7","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13174","citationCount":"0","resultStr":"{\"title\":\"Biomass yields, reproductive fertility, compositional analysis, and genetic diversity of newly developed triploid giant miscanthus hybrids\",\"authors\":\"Darren H. Touchell, Nathan Lynch, Reza Shekasteband, Allison N. Dickey, Mari C. Chinn, Matthew Whitfield, Thomas G. Ranney\",\"doi\":\"10.1111/gcbb.13174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Miscanthus</i> ×<i>giganteus</i> (giant miscanthus), first found as a naturally occurring hybrid, has shown promise as a bioenergy/biomass crop throughout much of the temperate world. This allotriploid (2<i>n</i> = 3<i>x</i> = 57) hybrid resulted from a cross between tetraploid <i>Miscanthus sacchariflorus</i> (2<i>n</i> = 4<i>x</i> = 76) and diploid <i>Miscanthus sinensis</i> (2<i>n</i> = 2<i>x</i> = 38) and is particularly desirable due to its low fertility that minimizes reseeding and potential invasiveness. However, there is limited genetic diversity in commonly grown cultivars of triploid <i>M.</i> ×<i>giganteus</i> and breeding and development efforts to improve and domesticate this crop have been minimal. Here, we report on newly developed <i>M.</i> ×<i>giganteus</i> hybrids compared with the industry standard <i>M.</i> ×<i>giganteus</i> '1993-1780'. Dry biomass yields of new hybrids ranged from 19.5 to 32.4 Mg/ha/year for the fourth growing season, compared with 21.0 Mg/ha/year for <i>M.</i> ×<i>giganteus</i> '1993-1780'. Plant reproductive fertility remained low for all accessions with overall fertility [(seed set × seed germination)/100] ranging from 0.3% to 4.5% for new hybrids compared to 0.4% for <i>M.</i> ×<i>giganteus</i> '1993-1780'. Culm density and height varied among accessions and were positively correlated with increased biomass. Based on compositional analyses, theoretical ethanol yields ranged from 9, 740 to 16,278 L/ha/year for new hybrids compared to 10,406 L/ha/year for <i>M.</i> ×<i>giganteus</i> '1993-1780'. Relative feed value indices were low overall and ranged between 66.0 and 72.8 for new hybrids compared to <i>M.</i> ×<i>giganteus</i> '1993-1780' with 71.3. The genetic diversity of new hybrids, compared with existing cultivars, was characterized using whole genome sequences. Based on pair-wise distances, cluster analysis clearly showed increased diversity of new hybrids compared with earlier selections. These results document new triploid hybrids of <i>M.</i> ×<i>giganteus</i> with enhanced biomass and theoretical ethanol yields in combination with broader genetic diversity and lowreproductive fertility.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 7\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13174\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13174\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13174","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
摘要
Miscanthus ×giganteus(巨型鹅掌楸)最早是作为一种自然发生的杂交种被发现的,在温带世界的大部分地区都显示出作为生物能源/生物质作物的前景。这种异源三倍体(2n = 3x = 57)杂交种由四倍体 Miscanthus sacchariflorus(2n = 4x = 76)和二倍体 Miscanthus sinensis(2n = 2x = 38)杂交而成,因其肥力低,可最大限度地减少再播种和潜在的入侵性而特别受欢迎。然而,通常种植的三倍体 M. ×giganteus 的遗传多样性有限,为改良和驯化这种作物而进行的育种和开发工作也很少。在此,我们报告了新开发的 M. ×giganteus杂交种与行业标准 M. ×giganteus'1993-1780'的比较。在第四个生长季,新杂交种的干生物量产量为 19.5 至 32.4 兆克/公顷/年,而 M. ×giganteus '1993-1780' 为 21.0 兆克/公顷/年。所有品种的植株繁殖力都很低,新杂交种的总繁殖力[(结实率×种子发芽率)/100]从 0.3% 到 4.5%不等,而 M. ×giganteus'1993-1780'的繁殖力为 0.4%。不同品种的茎秆密度和高度各不相同,并且与生物量的增加呈正相关。根据成分分析,新杂交种的理论乙醇产量为 9,740 至 16,278 升/公顷/年,而 M. ×giganteus'1993-1780'为 10,406 升/公顷/年。新杂交种的相对饲料价值指数总体较低,在 66.0 到 72.8 之间,而 M. ×giganteus'1993-1780'为 71.3。与现有栽培品种相比,利用全基因组序列对新杂交种的遗传多样性进行了表征。基于成对距离的聚类分析清楚地表明,与早期的选育品种相比,新杂交种的多样性有所增加。这些结果表明,新的×giganteus 三倍体杂交种具有更高的生物量和理论乙醇产量,同时具有更广泛的遗传多样性和低繁殖力。
Biomass yields, reproductive fertility, compositional analysis, and genetic diversity of newly developed triploid giant miscanthus hybrids
Miscanthus ×giganteus (giant miscanthus), first found as a naturally occurring hybrid, has shown promise as a bioenergy/biomass crop throughout much of the temperate world. This allotriploid (2n = 3x = 57) hybrid resulted from a cross between tetraploid Miscanthus sacchariflorus (2n = 4x = 76) and diploid Miscanthus sinensis (2n = 2x = 38) and is particularly desirable due to its low fertility that minimizes reseeding and potential invasiveness. However, there is limited genetic diversity in commonly grown cultivars of triploid M. ×giganteus and breeding and development efforts to improve and domesticate this crop have been minimal. Here, we report on newly developed M. ×giganteus hybrids compared with the industry standard M. ×giganteus '1993-1780'. Dry biomass yields of new hybrids ranged from 19.5 to 32.4 Mg/ha/year for the fourth growing season, compared with 21.0 Mg/ha/year for M. ×giganteus '1993-1780'. Plant reproductive fertility remained low for all accessions with overall fertility [(seed set × seed germination)/100] ranging from 0.3% to 4.5% for new hybrids compared to 0.4% for M. ×giganteus '1993-1780'. Culm density and height varied among accessions and were positively correlated with increased biomass. Based on compositional analyses, theoretical ethanol yields ranged from 9, 740 to 16,278 L/ha/year for new hybrids compared to 10,406 L/ha/year for M. ×giganteus '1993-1780'. Relative feed value indices were low overall and ranged between 66.0 and 72.8 for new hybrids compared to M. ×giganteus '1993-1780' with 71.3. The genetic diversity of new hybrids, compared with existing cultivars, was characterized using whole genome sequences. Based on pair-wise distances, cluster analysis clearly showed increased diversity of new hybrids compared with earlier selections. These results document new triploid hybrids of M. ×giganteus with enhanced biomass and theoretical ethanol yields in combination with broader genetic diversity and lowreproductive fertility.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.