CohortFinder:一种开源工具,用于对数字病理学和成像队列进行数据驱动的分区,以建立强大的机器学习模型

Fan Fan, Georgia Martinez, Thomas DeSilvio, John Shin, Yijiang Chen, Jackson Jacobs, Bangchen Wang, Takaya Ozeki, Maxime W. Lafarge, Viktor H. Koelzer, Laura Barisoni, Anant Madabhushi, Satish E. Viswanath, Andrew Janowczyk
{"title":"CohortFinder:一种开源工具,用于对数字病理学和成像队列进行数据驱动的分区,以建立强大的机器学习模型","authors":"Fan Fan, Georgia Martinez, Thomas DeSilvio, John Shin, Yijiang Chen, Jackson Jacobs, Bangchen Wang, Takaya Ozeki, Maxime W. Lafarge, Viktor H. Koelzer, Laura Barisoni, Anant Madabhushi, Satish E. Viswanath, Andrew Janowczyk","doi":"10.1038/s44303-024-00018-2","DOIUrl":null,"url":null,"abstract":"Batch effects (BEs) refer to systematic technical differences in data collection unrelated to biological variations whose noise is shown to negatively impact machine learning (ML) model generalizability. Here we release CohortFinder ( http://cohortfinder.com ), an open-source tool aimed at mitigating BEs via data-driven cohort partitioning. We demonstrate CohortFinder improves ML model performance in downstream digital pathology and medical image processing tasks. CohortFinder is freely available for download at cohortfinder.com.","PeriodicalId":501709,"journal":{"name":"npj Imaging","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44303-024-00018-2.pdf","citationCount":"0","resultStr":"{\"title\":\"CohortFinder: an open-source tool for data-driven partitioning of digital pathology and imaging cohorts to yield robust machine-learning models\",\"authors\":\"Fan Fan, Georgia Martinez, Thomas DeSilvio, John Shin, Yijiang Chen, Jackson Jacobs, Bangchen Wang, Takaya Ozeki, Maxime W. Lafarge, Viktor H. Koelzer, Laura Barisoni, Anant Madabhushi, Satish E. Viswanath, Andrew Janowczyk\",\"doi\":\"10.1038/s44303-024-00018-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Batch effects (BEs) refer to systematic technical differences in data collection unrelated to biological variations whose noise is shown to negatively impact machine learning (ML) model generalizability. Here we release CohortFinder ( http://cohortfinder.com ), an open-source tool aimed at mitigating BEs via data-driven cohort partitioning. We demonstrate CohortFinder improves ML model performance in downstream digital pathology and medical image processing tasks. CohortFinder is freely available for download at cohortfinder.com.\",\"PeriodicalId\":501709,\"journal\":{\"name\":\"npj Imaging\",\"volume\":\" \",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44303-024-00018-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44303-024-00018-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44303-024-00018-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

批次效应(BEs)指的是数据收集中与生物变异无关的系统性技术差异,其噪声已被证明会对机器学习(ML)模型的普适性产生负面影响。在此,我们发布了 CohortFinder ( http://cohortfinder.com ),这是一款开源工具,旨在通过数据驱动的队列分区来减轻批次效应。我们展示了 CohortFinder 在下游数字病理学和医学图像处理任务中提高了 ML 模型性能。CohortFinder 可在 cohortfinder.com 上免费下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CohortFinder: an open-source tool for data-driven partitioning of digital pathology and imaging cohorts to yield robust machine-learning models
Batch effects (BEs) refer to systematic technical differences in data collection unrelated to biological variations whose noise is shown to negatively impact machine learning (ML) model generalizability. Here we release CohortFinder ( http://cohortfinder.com ), an open-source tool aimed at mitigating BEs via data-driven cohort partitioning. We demonstrate CohortFinder improves ML model performance in downstream digital pathology and medical image processing tasks. CohortFinder is freely available for download at cohortfinder.com.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stratifying vascular disease patients into homogeneous subgroups using machine learning and FLAIR MRI biomarkers Metabolic nanoscopy enhanced by experimental and computational approaches Ultrahigh-field animal MRI system with advanced technological update Automated analysis of ultrastructure through large-scale hyperspectral electron microscopy Evaluation of the redox alteration in Duchenne muscular dystrophy model mice using in vivo DNP-MRI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1