Ahmed M Salaheldin, Manal Abdel Wahed, Neven Saleh
{"title":"利用人工智能技术检测视网膜疾病的混合模型。","authors":"Ahmed M Salaheldin, Manal Abdel Wahed, Neven Saleh","doi":"10.1088/2057-1976/ad5db2","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of vision impairment is increasing at an alarming rate. The goal of the study was to create an automated method that uses optical coherence tomography (OCT) to classify retinal disorders into four categories: choroidal neovascularization, diabetic macular edema, drusen, and normal cases. This study proposed a new framework that combines machine learning and deep learning-based techniques. The utilized classifiers were support vector machine (SVM), K-nearest neighbor (K-NN), decision tree (DT), and ensemble model (EM). A feature extractor, the InceptionV3 convolutional neural network, was also employed. The performance of the models was evaluated against nine criteria using a dataset of 18000 OCT images. For the SVM, K-NN, DT, and EM classifiers, the analysis exhibited state-of-the-art performance, with classification accuracies of 99.43%, 99.54%, 97.98%, and 99.31%, respectively. A promising methodology has been introduced for the automatic identification and classification of retinal disorders, leading to reduced human error and saved time.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid model for the detection of retinal disorders using artificial intelligence techniques.\",\"authors\":\"Ahmed M Salaheldin, Manal Abdel Wahed, Neven Saleh\",\"doi\":\"10.1088/2057-1976/ad5db2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The prevalence of vision impairment is increasing at an alarming rate. The goal of the study was to create an automated method that uses optical coherence tomography (OCT) to classify retinal disorders into four categories: choroidal neovascularization, diabetic macular edema, drusen, and normal cases. This study proposed a new framework that combines machine learning and deep learning-based techniques. The utilized classifiers were support vector machine (SVM), K-nearest neighbor (K-NN), decision tree (DT), and ensemble model (EM). A feature extractor, the InceptionV3 convolutional neural network, was also employed. The performance of the models was evaluated against nine criteria using a dataset of 18000 OCT images. For the SVM, K-NN, DT, and EM classifiers, the analysis exhibited state-of-the-art performance, with classification accuracies of 99.43%, 99.54%, 97.98%, and 99.31%, respectively. A promising methodology has been introduced for the automatic identification and classification of retinal disorders, leading to reduced human error and saved time.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ad5db2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad5db2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
视力损伤的发病率正以惊人的速度增长。这项研究的目标是创建一种自动方法,利用光学相干断层扫描(OCT)将视网膜疾病分为四类:脉络膜新生血管、糖尿病性黄斑水肿、色素沉着和正常病例。这项研究提出了一种新的框架,该框架结合了机器学习和基于深度学习的技术。使用的分类器包括支持向量机(SVM)、K-近邻(K-NN)、决策树(DT)和集合模型(EM)。此外,还使用了特征提取器 InceptionV3 卷积神经网络。利用 18000 张 OCT 图像数据集,根据九项标准对模型的性能进行了评估。就 SVM、K-NN、DT 和 EM 分类器而言,分析结果显示出了最先进的性能,分类准确率分别为 99.43%、99.54%、97.98% 和 99.31%。为视网膜疾病的自动识别和分类引入了一种有前途的方法,从而减少了人为错误,节省了时间。
A hybrid model for the detection of retinal disorders using artificial intelligence techniques.
The prevalence of vision impairment is increasing at an alarming rate. The goal of the study was to create an automated method that uses optical coherence tomography (OCT) to classify retinal disorders into four categories: choroidal neovascularization, diabetic macular edema, drusen, and normal cases. This study proposed a new framework that combines machine learning and deep learning-based techniques. The utilized classifiers were support vector machine (SVM), K-nearest neighbor (K-NN), decision tree (DT), and ensemble model (EM). A feature extractor, the InceptionV3 convolutional neural network, was also employed. The performance of the models was evaluated against nine criteria using a dataset of 18000 OCT images. For the SVM, K-NN, DT, and EM classifiers, the analysis exhibited state-of-the-art performance, with classification accuracies of 99.43%, 99.54%, 97.98%, and 99.31%, respectively. A promising methodology has been introduced for the automatic identification and classification of retinal disorders, leading to reduced human error and saved time.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.