通过图神经网络和图框架集成进行电路动态预测:三相逆变器案例研究

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE open journal of power electronics Pub Date : 2024-06-18 DOI:10.1109/OJPEL.2024.3416195
Ahmed K. Khamis;Mohammed Agamy
{"title":"通过图神经网络和图框架集成进行电路动态预测:三相逆变器案例研究","authors":"Ahmed K. Khamis;Mohammed Agamy","doi":"10.1109/OJPEL.2024.3416195","DOIUrl":null,"url":null,"abstract":"This article proposes an integration between a graph framework for circuit representation and a Graph neural network (GNN) model suitable for different machine learning (ML) applications. Furthermore, the paper highlights design steps for tailoring and using the GNN-based ML model for converter performance predictions based on converter circuit level and internal parameter variations. Regardless of the number of components or connections present in a converter circuit, the proposed model can be readily scaled to incorporate different converter circuit topologies and may be used to analyze such circuits regardless of the number of components used or control parameters varied. To enable the use of ML methods and applications, all physical and switching circuit properties including operating mode, components and circuit behavior must be accurately mapped to graph representation. The model scalability to other circuit types and different connections and circuits elements is also tested, while being studied in the most common DC-AC inverter in grid connected systems including filter and filterless configurations. The filtered and filterless DC-AC inverter circuits are used to evaluate the model, scoring \n<inline-formula><tex-math>$R^{2}$</tex-math></inline-formula>\n greater than 99% in most cases and a mean square error (MSE) tending to zero.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10560473","citationCount":"0","resultStr":"{\"title\":\"Circuit Dynamics Prediction via Graph Neural Network & Graph Framework Integration: Three Phase Inverter Case Study\",\"authors\":\"Ahmed K. Khamis;Mohammed Agamy\",\"doi\":\"10.1109/OJPEL.2024.3416195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an integration between a graph framework for circuit representation and a Graph neural network (GNN) model suitable for different machine learning (ML) applications. Furthermore, the paper highlights design steps for tailoring and using the GNN-based ML model for converter performance predictions based on converter circuit level and internal parameter variations. Regardless of the number of components or connections present in a converter circuit, the proposed model can be readily scaled to incorporate different converter circuit topologies and may be used to analyze such circuits regardless of the number of components used or control parameters varied. To enable the use of ML methods and applications, all physical and switching circuit properties including operating mode, components and circuit behavior must be accurately mapped to graph representation. The model scalability to other circuit types and different connections and circuits elements is also tested, while being studied in the most common DC-AC inverter in grid connected systems including filter and filterless configurations. The filtered and filterless DC-AC inverter circuits are used to evaluate the model, scoring \\n<inline-formula><tex-math>$R^{2}$</tex-math></inline-formula>\\n greater than 99% in most cases and a mean square error (MSE) tending to zero.\",\"PeriodicalId\":93182,\"journal\":{\"name\":\"IEEE open journal of power electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10560473\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of power electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10560473/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10560473/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于电路表示的图框架与适用于不同机器学习(ML)应用的图神经网络(GNN)模型之间的集成。此外,本文还重点介绍了根据转换器电路水平和内部参数变化,定制和使用基于 GNN 的 ML 模型进行转换器性能预测的设计步骤。无论转换器电路中存在多少组件或连接,所提出的模型都可以很容易地进行扩展,以纳入不同的转换器电路拓扑结构,并可用于分析这些电路,而无需考虑所使用组件的数量或控制参数的变化。为了能够使用 ML 方法和应用,必须将所有物理和开关电路属性(包括工作模式、组件和电路行为)准确映射到图形表示法中。我们还测试了模型对其他电路类型、不同连接和电路元件的可扩展性,并对并网系统中最常见的直流-交流逆变器(包括滤波和无滤波配置)进行了研究。滤波和无滤波直流交流逆变器电路用于评估模型,在大多数情况下,R^{2}$大于 99%,均方误差 (MSE) 趋于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Circuit Dynamics Prediction via Graph Neural Network & Graph Framework Integration: Three Phase Inverter Case Study
This article proposes an integration between a graph framework for circuit representation and a Graph neural network (GNN) model suitable for different machine learning (ML) applications. Furthermore, the paper highlights design steps for tailoring and using the GNN-based ML model for converter performance predictions based on converter circuit level and internal parameter variations. Regardless of the number of components or connections present in a converter circuit, the proposed model can be readily scaled to incorporate different converter circuit topologies and may be used to analyze such circuits regardless of the number of components used or control parameters varied. To enable the use of ML methods and applications, all physical and switching circuit properties including operating mode, components and circuit behavior must be accurately mapped to graph representation. The model scalability to other circuit types and different connections and circuits elements is also tested, while being studied in the most common DC-AC inverter in grid connected systems including filter and filterless configurations. The filtered and filterless DC-AC inverter circuits are used to evaluate the model, scoring $R^{2}$ greater than 99% in most cases and a mean square error (MSE) tending to zero.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
Fast and Accurate Data Sheet Based Analytical Switching Loss Model for a SiC MOSFET and Schottky Diode Half-Bridge A Model Predictive Control With Grid-Forming Capability for Back-to-Back Converters in Wind Turbine Systems A Double-Sided Cooling Approach of Discrete SiC MOSFET Device Based on Press-Pack Package A Dual-Peak Current Control Strategy and Implementation for Four-Switch Buck-Boost Converter A Review of the Experimental Performance of Turn-Off Methods in Wide Bandgap Semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1