对管道焊点进行可靠的视觉检测

IF 1.7 4区 材料科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Soldering & Surface Mount Technology Pub Date : 2024-07-03 DOI:10.1108/ssmt-04-2023-0018
Huijun An, Lingbao Kong
{"title":"对管道焊点进行可靠的视觉检测","authors":"Huijun An, Lingbao Kong","doi":"10.1108/ssmt-04-2023-0018","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Solder joint inspection plays a critical role in various industries, with a focus on integrated chip (IC) solder joints and metal surface welds. However, the detection of tubular solder joints has received relatively less attention. This paper aims to address the challenges of detecting small targets and complex environments by proposing a robust visual detection method for pipeline solder joints. The method is characterized by its simplicity, cost-effectiveness and ease of implementation.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>A robust visual detection method based on the characteristics of pipeline solder joints is proposed. With the improved hue, saturation and value (HSV) color space, the method uses a multi-level template matching approach to first segment the pipeline from the background, and then match the endpoint of the pipeline to accurately locate the solder joint. The proposed method leverages the distinctive characteristics of pipeline solder joints and employs an enhanced HSV color space. A multi-level template matching approach is utilized to segment the pipeline from the background and accurately locate the solder joint by matching the pipeline endpoint.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The experimental results demonstrate the effectiveness of the proposed solder joint detection method in practical detection tasks. The average precision of pipeline weld joint localization exceeds 95%, while the average recall is greater than 90%. These findings highlight the applicability of the method to pipeline solder joint detection tasks, specifically in the context of production lines for refrigeration equipment.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>The precision of the method is influenced by the placement angle and lighting conditions of the test specimen, which may pose challenges and impact the algorithm's performance. Potential avenues for improvement include exploring deep learning methods, incorporating additional features and contextual information for localization, and utilizing advanced image enhancement techniques to improve image quality.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The proposed pipeline solder joint detection method offers a novel and practical approach. The simplicity, cost-effectiveness and ease of implementation make it an attractive choice for detecting pipeline solder joints in different industrial applications.</p><!--/ Abstract__block -->","PeriodicalId":49499,"journal":{"name":"Soldering & Surface Mount Technology","volume":"38 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust vision detection of pipeline solder joints\",\"authors\":\"Huijun An, Lingbao Kong\",\"doi\":\"10.1108/ssmt-04-2023-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>Solder joint inspection plays a critical role in various industries, with a focus on integrated chip (IC) solder joints and metal surface welds. However, the detection of tubular solder joints has received relatively less attention. This paper aims to address the challenges of detecting small targets and complex environments by proposing a robust visual detection method for pipeline solder joints. The method is characterized by its simplicity, cost-effectiveness and ease of implementation.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>A robust visual detection method based on the characteristics of pipeline solder joints is proposed. With the improved hue, saturation and value (HSV) color space, the method uses a multi-level template matching approach to first segment the pipeline from the background, and then match the endpoint of the pipeline to accurately locate the solder joint. The proposed method leverages the distinctive characteristics of pipeline solder joints and employs an enhanced HSV color space. A multi-level template matching approach is utilized to segment the pipeline from the background and accurately locate the solder joint by matching the pipeline endpoint.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The experimental results demonstrate the effectiveness of the proposed solder joint detection method in practical detection tasks. The average precision of pipeline weld joint localization exceeds 95%, while the average recall is greater than 90%. These findings highlight the applicability of the method to pipeline solder joint detection tasks, specifically in the context of production lines for refrigeration equipment.</p><!--/ Abstract__block -->\\n<h3>Research limitations/implications</h3>\\n<p>The precision of the method is influenced by the placement angle and lighting conditions of the test specimen, which may pose challenges and impact the algorithm's performance. Potential avenues for improvement include exploring deep learning methods, incorporating additional features and contextual information for localization, and utilizing advanced image enhancement techniques to improve image quality.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The proposed pipeline solder joint detection method offers a novel and practical approach. The simplicity, cost-effectiveness and ease of implementation make it an attractive choice for detecting pipeline solder joints in different industrial applications.</p><!--/ Abstract__block -->\",\"PeriodicalId\":49499,\"journal\":{\"name\":\"Soldering & Surface Mount Technology\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soldering & Surface Mount Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/ssmt-04-2023-0018\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soldering & Surface Mount Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/ssmt-04-2023-0018","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

目的焊点检测在各行各业都发挥着至关重要的作用,重点是集成芯片(IC)焊点和金属表面焊缝。然而,管状焊点的检测却相对较少受到关注。本文旨在通过提出一种稳健的管状焊点视觉检测方法来应对检测小型目标和复杂环境的挑战。设计/方法/途径根据管道焊点的特点,提出了一种稳健的视觉检测方法。利用改进的色调、饱和度和值(HSV)色彩空间,该方法采用多级模板匹配方法,首先从背景中分割出流水线,然后匹配流水线的端点,以准确定位焊点。所提出的方法利用了流水线焊点的显著特征,并采用了增强的 HSV 色彩空间。实验结果表明了所提出的焊点检测方法在实际检测任务中的有效性。管道焊点定位的平均精确度超过 95%,平均召回率超过 90%。研究局限/启示该方法的精确度受测试样本的放置角度和照明条件的影响,这可能会带来挑战并影响算法的性能。潜在的改进途径包括探索深度学习方法、为定位整合附加特征和上下文信息,以及利用先进的图像增强技术提高图像质量。该方法简单、成本效益高且易于实施,是在不同工业应用中检测管道焊点的极具吸引力的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust vision detection of pipeline solder joints

Purpose

Solder joint inspection plays a critical role in various industries, with a focus on integrated chip (IC) solder joints and metal surface welds. However, the detection of tubular solder joints has received relatively less attention. This paper aims to address the challenges of detecting small targets and complex environments by proposing a robust visual detection method for pipeline solder joints. The method is characterized by its simplicity, cost-effectiveness and ease of implementation.

Design/methodology/approach

A robust visual detection method based on the characteristics of pipeline solder joints is proposed. With the improved hue, saturation and value (HSV) color space, the method uses a multi-level template matching approach to first segment the pipeline from the background, and then match the endpoint of the pipeline to accurately locate the solder joint. The proposed method leverages the distinctive characteristics of pipeline solder joints and employs an enhanced HSV color space. A multi-level template matching approach is utilized to segment the pipeline from the background and accurately locate the solder joint by matching the pipeline endpoint.

Findings

The experimental results demonstrate the effectiveness of the proposed solder joint detection method in practical detection tasks. The average precision of pipeline weld joint localization exceeds 95%, while the average recall is greater than 90%. These findings highlight the applicability of the method to pipeline solder joint detection tasks, specifically in the context of production lines for refrigeration equipment.

Research limitations/implications

The precision of the method is influenced by the placement angle and lighting conditions of the test specimen, which may pose challenges and impact the algorithm's performance. Potential avenues for improvement include exploring deep learning methods, incorporating additional features and contextual information for localization, and utilizing advanced image enhancement techniques to improve image quality.

Originality/value

The proposed pipeline solder joint detection method offers a novel and practical approach. The simplicity, cost-effectiveness and ease of implementation make it an attractive choice for detecting pipeline solder joints in different industrial applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soldering & Surface Mount Technology
Soldering & Surface Mount Technology 工程技术-材料科学:综合
CiteScore
4.10
自引率
15.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Soldering & Surface Mount Technology seeks to make an important contribution to the advancement of research and application within the technical body of knowledge and expertise in this vital area. Soldering & Surface Mount Technology compliments its sister publications; Circuit World and Microelectronics International. The journal covers all aspects of SMT from alloys, pastes and fluxes, to reliability and environmental effects, and is currently providing an important dissemination route for new knowledge on lead-free solders and processes. The journal comprises a multidisciplinary study of the key materials and technologies used to assemble state of the art functional electronic devices. The key focus is on assembling devices and interconnecting components via soldering, whilst also embracing a broad range of related approaches.
期刊最新文献
Formation and growth mechanism of thin Cu6Sn5 films in Sn/Cu and Sn-0.1AlN/Cu structures using laser heating Influence of annealing temperature on 3D surface stereometric analysis in C-Ni films Effect of different beam distances in laser soldering process: a numerical and experimental study Interfacial IMC growth behavior of Sn-3Ag-3Sb-xIn solder on Cu substrate Effects of Ni addition on wettability and interfacial microstructure of Sn-0.7Cu-xNi solder alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1