{"title":"基本迭代解卷积:一种快速仪器点扩散函数解卷积方法,用于校正散射到探测器视场之外的光线","authors":"Stefan Johann Hofmeister","doi":"10.1007/s11207-024-02321-y","DOIUrl":null,"url":null,"abstract":"<div><p>A point-spread function describes the optics of an imaging system and can be used to correct collected images for instrumental effects. The state of the art for deconvolving images with the point-spread function is the Richardson–Lucy algorithm; however, despite its high fidelity, it is slow and cannot account for light scattered out of the field of view of the detector. We reinstate the Basic Iterative Deconvolution (BID) algorithm, a deconvolution algorithm that considers photons scattered out of the field of view of the detector, and extend it for image subregion deconvolutions. Its runtime is 1.8 to 7.1 faster than the Richardson–Lucy algorithm for <span>\\(4096 \\times 4096\\)</span> pixel images and up to an additional factor of 150 for subregions of <span>\\(250 \\times 250\\)</span> pixels. We test the extended BID algorithm for solar images taken by the Atmospheric Imaging Assembly (AIA), and find that the reconstructed intensities between BID and the Richardson–Lucy algorithm agree within 1%.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Basic Iterative Deconvolution: A Fast Instrumental Point-Spread Function Deconvolution Method That Corrects for Light That Is Scattered Out of the Field of View of a Detector\",\"authors\":\"Stefan Johann Hofmeister\",\"doi\":\"10.1007/s11207-024-02321-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A point-spread function describes the optics of an imaging system and can be used to correct collected images for instrumental effects. The state of the art for deconvolving images with the point-spread function is the Richardson–Lucy algorithm; however, despite its high fidelity, it is slow and cannot account for light scattered out of the field of view of the detector. We reinstate the Basic Iterative Deconvolution (BID) algorithm, a deconvolution algorithm that considers photons scattered out of the field of view of the detector, and extend it for image subregion deconvolutions. Its runtime is 1.8 to 7.1 faster than the Richardson–Lucy algorithm for <span>\\\\(4096 \\\\times 4096\\\\)</span> pixel images and up to an additional factor of 150 for subregions of <span>\\\\(250 \\\\times 250\\\\)</span> pixels. We test the extended BID algorithm for solar images taken by the Atmospheric Imaging Assembly (AIA), and find that the reconstructed intensities between BID and the Richardson–Lucy algorithm agree within 1%.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"299 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02321-y\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02321-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Basic Iterative Deconvolution: A Fast Instrumental Point-Spread Function Deconvolution Method That Corrects for Light That Is Scattered Out of the Field of View of a Detector
A point-spread function describes the optics of an imaging system and can be used to correct collected images for instrumental effects. The state of the art for deconvolving images with the point-spread function is the Richardson–Lucy algorithm; however, despite its high fidelity, it is slow and cannot account for light scattered out of the field of view of the detector. We reinstate the Basic Iterative Deconvolution (BID) algorithm, a deconvolution algorithm that considers photons scattered out of the field of view of the detector, and extend it for image subregion deconvolutions. Its runtime is 1.8 to 7.1 faster than the Richardson–Lucy algorithm for \(4096 \times 4096\) pixel images and up to an additional factor of 150 for subregions of \(250 \times 250\) pixels. We test the extended BID algorithm for solar images taken by the Atmospheric Imaging Assembly (AIA), and find that the reconstructed intensities between BID and the Richardson–Lucy algorithm agree within 1%.
期刊介绍:
Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.