灯泡几何形状和电源参数对 DBD 准分子灯紫外线发射的影响

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL Plasma Chemistry and Plasma Processing Pub Date : 2024-06-28 DOI:10.1007/s11090-024-10480-w
Arnold Wiesner, Rafael Diez, Hubert Piquet
{"title":"灯泡几何形状和电源参数对 DBD 准分子灯紫外线发射的影响","authors":"Arnold Wiesner, Rafael Diez, Hubert Piquet","doi":"10.1007/s11090-024-10480-w","DOIUrl":null,"url":null,"abstract":"<p>The aim of this article is to improve the performance of DBD excimer lamps systems for UV production. Within this framework, our approach considers two distinct directions: the geometric dimensions of the double-barrier lamp bulb and the characteristics of the power supply. To explore these directions, a sampling of 19 bulbs of different geometries is considered, and a specially designed power supply is used, capable of controlling the shape (duration and magnitude) and frequency of current pulses injected into the plasma. A dedicated test bench, including a supervisory program that drives the power supply and collects system performance data, is used to perform parametric sweeps and guarantee measurement repeatability: the set of electrical parameters is fully explored for each lamp, and each experiment is characterized by UV emission performance and electrical generator operating conditions. Multiquadric response surfaces, used to format the results of this multi-variable exploration, reveal the most efficient directions for system optimization: increasing gas volume and, at a given operating frequency, providing the shortest possible current pulses with high amplitude can increase both UV emission and conversion efficiency.</p>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the Bulb Geometry and Electrical Supply Parameters on the UV Emission of DBD Excimer Lamps\",\"authors\":\"Arnold Wiesner, Rafael Diez, Hubert Piquet\",\"doi\":\"10.1007/s11090-024-10480-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this article is to improve the performance of DBD excimer lamps systems for UV production. Within this framework, our approach considers two distinct directions: the geometric dimensions of the double-barrier lamp bulb and the characteristics of the power supply. To explore these directions, a sampling of 19 bulbs of different geometries is considered, and a specially designed power supply is used, capable of controlling the shape (duration and magnitude) and frequency of current pulses injected into the plasma. A dedicated test bench, including a supervisory program that drives the power supply and collects system performance data, is used to perform parametric sweeps and guarantee measurement repeatability: the set of electrical parameters is fully explored for each lamp, and each experiment is characterized by UV emission performance and electrical generator operating conditions. Multiquadric response surfaces, used to format the results of this multi-variable exploration, reveal the most efficient directions for system optimization: increasing gas volume and, at a given operating frequency, providing the shortest possible current pulses with high amplitude can increase both UV emission and conversion efficiency.</p>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11090-024-10480-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11090-024-10480-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在提高用于紫外线生产的 DBD 准分子灯系统的性能。在此框架内,我们的方法考虑了两个不同的方向:双阻隔灯泡的几何尺寸和电源的特性。为了探索这些方向,我们对 19 个不同几何尺寸的灯泡进行了取样,并使用了专门设计的电源,该电源能够控制注入等离子体的电流脉冲的形状(持续时间和幅度)和频率。专用的测试台(包括驱动电源和收集系统性能数据的监控程序)用于执行参数扫描和保证测量的可重复性:对每盏灯的电气参数集进行了充分的探索,每次实验都以紫外线发射性能和电气发生器的工作条件为特征。多方位响应曲面用于格式化这种多变量探索的结果,揭示了最有效的系统优化方向:增加气体体积,以及在给定的工作频率下,提供尽可能短的高振幅电流脉冲,可以提高紫外线发射和转换效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of the Bulb Geometry and Electrical Supply Parameters on the UV Emission of DBD Excimer Lamps

The aim of this article is to improve the performance of DBD excimer lamps systems for UV production. Within this framework, our approach considers two distinct directions: the geometric dimensions of the double-barrier lamp bulb and the characteristics of the power supply. To explore these directions, a sampling of 19 bulbs of different geometries is considered, and a specially designed power supply is used, capable of controlling the shape (duration and magnitude) and frequency of current pulses injected into the plasma. A dedicated test bench, including a supervisory program that drives the power supply and collects system performance data, is used to perform parametric sweeps and guarantee measurement repeatability: the set of electrical parameters is fully explored for each lamp, and each experiment is characterized by UV emission performance and electrical generator operating conditions. Multiquadric response surfaces, used to format the results of this multi-variable exploration, reveal the most efficient directions for system optimization: increasing gas volume and, at a given operating frequency, providing the shortest possible current pulses with high amplitude can increase both UV emission and conversion efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
期刊最新文献
Numerical Simulation of the Ionic Composition and Ionization Phenomena in the Positive Column of a Millisecond DC-Pulsed Glow-Type Discharge in Atmospheric Pressure Air with a Water-Cathode Ar-O2 Plasma-Induced Grafting of Quaternary Ammonium on Polyvinyl Chloride Surface to Improve its Antimicrobial Properties Influence of Dielectric Barrier Discharge Power on the Removal of CH4 and NO From Exhaust Emissions of LNG Engines Low-Temperature Oxidation of Diesel Particulate Matter Using Dielectric Barrier Discharge Plasma Degradation of Methylene Blue by Using an Argon Microwave Plasma Jet in Humid Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1